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Abstract

Martin, Nuran Cihangir; Santos, Bruno Fânzeres dos (Advisor). Com-
putational techniques and model accuracy for electric power
transmission and distribution solo and coordinated system-
operational problems. Rio de Janeiro, 2024. 187p. Tese de Doutorado –
Departamento de Engenharia Industrial, Pontifícia Universidade Católica
do Rio de Janeiro.

To counter climate change, modern power systems are undergoing a
decarbonisation-based transition involving vast deployment of renewable en-
ergy sources and electrification of societies. For this transition to succeed,
various challenges associated with renewable power production need to be ad-
dressed in power system operations. These challenges stem from high output
variability along with limited predictability and controllability, leading to flex-
ibility needs in power system operations. Optimal power flow (OPF) and unit
commitment (UC) are amongst the most important computational tools for
system operators to determine the state of the power system. This computa-
tion is performed to optimise various decisions on the grid, to dispatch the
components in the network, and to reconfigure them. Additionally, the com-
putation is used to price the services provided by large scale generators and,
progressively, by decentralised entities such as households and small enterprises
which, apart from consuming, also generate and store power, and thus, have
a role in energy balancing through their flexibility. Various simplifications are
made in OPF and UC to tackle the computational burden of the models, which
tends to be high for realistic systems. Model inaccuracy due to simplification
of power flow equations or ignoring stochasticity, is increasingly causing high
costs for system operations, as the real situation deviates from the forecast
implying costly actions by system operators in real-time.

This thesis focuses on challenges in modern power system operations,
such as coordinated congestion and voltage management, energy and reserve
scheduling as well as price computation. Firstly, the thesis constructs meth-
ods and algorithms to enhance computational capability and model accuracy
for Alternating Current (AC) Network-Constrained UC and OPF problems
through devising an improved approximation of the physical laws governing
power flows. Secondly, it applies these methods and algorithms to the coordi-
nation problem amongst multiple Distribution System Operators (DSO) and



Transmission System Operators (TSO), introducing novel decentralised opti-
misation techniques for managing congestion and voltage problems as well as
addressing network information exchange aspects. Finally, the thesis proposes
new pricing mechanisms, endogenously tackling the non-convex operational
decisions for energy and reserve scheduling for day-ahead planning, consider-
ing stochasticity of renewable energy generation. Computational and accuracy
benefits are illustrated in case studies by employing various metrics developed.

Keywords
AC Network Constrained Unit Commitment and Optimal Power Flow;

DSO-TSO Coordination; Congestion and Voltage Management; Distributed
Optimisation; Computational Techniques.



Resumo

Martin, Nuran Cihangir; Santos, Bruno Fânzeres dos. Técnicas compu-
tacionais e precisão de modelos para problemas de operação de
sistemas individuais e coordenados de transmissão e distribui-
ção de energia elétrica. Rio de Janeiro, 2024. 187p. Tese de Doutorado
– Departamento de Engenharia Industrial, Pontifícia Universidade Cató-
lica do Rio de Janeiro.

Para combater as alterações climáticas, os sistemas energéticos modernos
estão a passar por uma transição baseada na descarbonização, envolvendo
uma vasta implantação de fontes de energia renováveis e a electrificação
das sociedades. Para que esta transição seja bem sucedida, vários desafios
associados à produção de energia renovável precisam de ser abordados nas
operações do sistema energético. Esses desafios decorrem da alta variabilidade
de produção, juntamente com previsibilidade e controlabilidade limitadas,
levando a necessidades de flexibilidade nas operações do sistema de energia. O
fluxo de potência ideal (OPF) e o comprometimento da unidade (UC) estão
entre as ferramentas computacionais mais importantes para os operadores do
sistema determinarem o estado do sistema de potência. Este cálculo é realizado
para otimizar diversas decisões na rede, para despachar os componentes da
rede e para reconfigurá-los. Além disso, o cálculo é utilizado para precificar
os serviços prestados por geradores de grande escala e, progressivamente, por
entidades descentralizadas como famílias e pequenas empresas que, além de
consumirem, também geram e armazenam energia, e assim, têm um papel
no equilíbrio energético através de sua flexibilidade. Várias simplificações são
feitas no OPF e no UC para lidar com a carga computacional dos modelos, que
tende a ser elevada para sistemas realistas. A imprecisão do modelo devido à
simplificação das equações de fluxo de potência ou ao ignorar a estocasticidade,
está causando cada vez mais altos custos para as operações do sistema, à
medida que a situação real se desvia da previsão, implicando ações dispendiosas
por parte dos operadores do sistema em tempo real.

Esta tese centra-se nos desafios das operações dos sistemas de energia
modernos, tais como gestão coordenada de congestionamento e tensão, pro-
gramação de energia e reservas, bem como cálculo de preços. Em primeiro
lugar, a tese constrói métodos e algoritmos para melhorar a capacidade com-
putacional e a precisão do modelo para problemas de UC e OPF com restrita



de rede e corrente alternada (AC) através do desenvolvimento de uma apro-
ximação melhorada das leis físicas que governam os fluxos de potência. Em
segundo lugar, aplica estes métodos e algoritmos ao problema de coordena-
ção entre múltiplos Operadores de Redes de Distribuição (DSO) e Operadores
de Redes de Transmissão (TSO), introduzindo novas técnicas de optimização
descentralizada para gerir problemas de congestionamento e tensão, bem como
abordar aspectos de troca de informação de rede. Por fim, a tese propõe novos
mecanismos de precificação, abordando endogenamente as decisões operacio-
nais não convexas de energia e programação de reservas para o planejamento
do dia seguinte, considerando a estocasticidade da geração de energia renová-
vel. Os benefícios computacionais e de precisão são ilustrados em estudos de
caso, empregando diversas métricas desenvolvidas.

Palavras-chave
Unit Commitment com restrita de rede AC e fluxo de potência; Coorde-

nação DSO-TSO; Gerenciamento de congestionamento e tensão; Otimização
distribuída; Técnicas computacionais.



Table of contents

1 Introduction 16
1.1 Context and motivation 16
1.2 Objectives 22
1.3 Research directions 23
1.4 Scientific contributions 27
1.5 Thesis outline 29
1.6 List of publications 30

2 Methodological Background 32
2.1 Convex relaxations and approximations for AC Optimal Power Flow 32
2.2 Outer approximation 51
2.3 Distributed, decentralised computation of Optimal Power Flow 55
2.4 Stochastic optimisation 60
2.5 Bi-linear optimisation 62
2.6 Risk measures and control 65

3 Computational Techniques and Model Accuracy in Unit
Commitment and AC Optimal Power Flow 68

3.1 Background for Mathematical Formulations 68
3.2 Introduction 68
3.3 Mathematical Formulation 70
3.4 Solution Methodology 73
3.5 Numerical Experiments 78

4 Computational Techniques and Model Accuracy in DSO-
TSO Coordination Problems for Congestion and Voltage
Management 90

4.1 Background for Mathematical Formulations 90
4.2 Introduction 91
4.3 Mathematical Formulation 96
4.4 Solution Methodology 101
4.5 Numerical Experiments 113

5 Computational Techniques and Model Accuracy in Energy
and Reserve Pricing for Power Systems with Non-Convex
Costs 126

5.1 Stochastic Energy and Reserve Market Clearing Model with Cost
Recovery 132

5.2 Solution Methodology: Hybrid McCormick Envelopes and Binary
Expansion 145

5.3 Case Study 147
5.4 Chapter Conclusion 160

6 Conclusions, Limitations and Future Perspectives 163
6.1 Overview of conclusions 163



List of figures

Figure 3.1 Total cost [$] per iteration for medium-loading case. 79
Figure 3.2 Illustrative cut procedure. 81
Figure 3.3 Case 2: Constraint violation under the algorithm high-loading
case. 83
Figure 3.4 Case 2: Constraint violation under the SOCP high-loading case. 83
Figure 3.5 Case 1, 5-bus, 24-hours: Computational performance curves
plotting percentage of instances solved vs. runtime in natural logarithm of
seconds of each instance solved. 86
Figure 3.6 Case 2, 240-bus, 24-hours: Computational performance curves
plotting percentage of instances solved vs. runtime in natural logarithm of
seconds of each instance solved. 87
Figure 3.7 Case 3, 118-bus, 24-hours: Computational performance curves
plotting percentage of instances solved vs. runtime in natural logarithm of
seconds of each instance solved. 87
Figure 3.8 Case 1, 5-bus, 24-hours: Constraint violations in p.u. for 100
instances under the algorithm high-loading case. 88
Figure 3.9 Case 1, 5-bus, 24-hours: Constraint violations in p.u. for 100
instances under the SOCP high-loading case. 89

Figure 4.1 Illustration with 3-subsystems. 107
Figure 4.2 Standard ADMM with 3-subsystems. 107
Figure 4.3 Decentralised ADMM with 3-subsystems. 108
Figure 4.4 7-bus system with 3 sub-systems. 115
Figure 4.5 Case 1 with 2 sub-systems: Optimality gap per iteration for
standard ADMM results with different values of ρ. 116
Figure 4.6 Case 1 with 2 sub-systems: Optimality gap per iteration
standard ADMM vs. 2-level ADMM results with ρ = 8. 117
Figure 4.7 Total demand and renewable generation per hour in MW. 123
Figure 4.8 Active power flow P per hour at the interface nodes between
subsystems in MW. 123
Figure 4.9 Reactive power flow Q per hour at the interface nodes between
subsystems in MVAr. 124
Figure 4.10 SOC [MWh] storage system-1 per hour at the distribution
systems. 124
Figure 4.11 SOC [MWh] storage system-2 per hour at the distribution
systems, representative also for storage system-3 and 4. 124

Figure 5.1 Technology-specific revenue cap, adapted from [162]. 143
Figure 5.2 Flowchart of the proposed model. 144
Figure 5.3 Illustrative 3-bus system. 148
Figure 5.4 Case 2: Congestion DA-energy prices per node ($ / MWh) 157
Figure 5.5 Case 2: Lost opportunity cost per generator ($) 157
Figure 5.6 Case 3: Lost opportunity cost per generator (x10 $) 159



List of tables

Table 3.1 5-Bus generation data. 78
Table 3.2 5-Bus line and demand data. 79
Table 3.3 Proposed Algorithm - Case 1, Total costs, computational time,
number of iterations and Max. ConsViol for each system-loading level. 80
Table 3.4 SOCP - Case 1, Total costs, computational time and Max.
ConsViol for each system-loading level. 80
Table 3.5 Case 2, 240-Bus generation data. 81
Table 3.6 Proposed Algorithm - Case 2, Total costs, computational time,
number of iterations and Max. ConsViol for each system-loading level. 82
Table 3.7 SOCP - Case 2, Total costs, computational time and Max.
ConsViol. for each system-loading level. 82
Table 3.8 Descriptive statistics for computational time under Algorithm
for each system-loading level. 85
Table 3.9 Descriptive statistics for computational time under SOCP for
each system-loading level. 86

Table 4.1 7-Bus system branch data. 115
Table 4.2 7-Bus system 2-Case studies. 116
Table 4.3 7-Bus system computational results. 116
Table 4.4 IEEE-118-bus transmission system coupled with one IEEE-33
bus distribution system; DC power flow 1-hour without flexible resources
computational results for ρ = 8. 119
Table 4.5 IEEE-118-bus transmission system coupled with two IEEE-33
bus distribution systems; DC power flow 1-hour without flexible resources
computational results for ρ = 8. 120
Table 4.6 IEEE-118-bus transmission system coupled with two 33-bus
distribution systems; AC power flow 24-h with flexible resources compu-
tational results:’Two-level ADMM with Linearisation-Algorithm 1 & 2 vs.
’Standard ADMM with Standard SOCP’ 125

Table 5.1 3-Bus thermal generation data. 149
Table 5.2 Case 1: Energy & Res. Market: DA-energy, reserve, and RT-
prices ($ / MWh). 149
Table 5.3 Case 1: Energy & Res. Market: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%). 150
Table 5.4 Case 1: Energy & Res. Market: Opportunity cost under
different pricing schemes ($). 150
Table 5.5 Case 1: Energy-only market case: DA and RT prices ($ / MWh).151
Table 5.6 Case 1: Energy-only market case: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%). 151
Table 5.7 Case 1: Energy-only market case: Opportunity cost under
different pricing schemes ($). 151
Table 5.8 Case 1: Congestion case: Consumer payment ($), Expected
cost of supplying energy ($) and Duality gap (%). 152



Table 5.9 Case 1: Congestion case: Opportunity cost under different
pricing schemes ($). 153
Table 5.10 Case 1: Risk aversion case: DA-energy, reserve and RT-prices
($/MWh). 153
Table 5.11 Case 1: Risk aversion case: Consumer payment ($), Expected
cost of supplying energy ($), and Duality gap (%). 154
Table 5.12 Case 1: Risk aversion case: Opportunity cost under different
pricing schemes ($). 154
Table 5.13 Case 1: Illustration of benefit of risk-aversion. 154
Table 5.14 Case 2: Risk-neutral Energy and Reserve: Consumer payment
($), Expected cost of supplying energy ($), and Duality gap (%). 155
Table 5.15 Case 2: Average profit per generator under different pricing
schemes and market, operational case ($). 156
Table 5.16 Case 2: Risk-neutral Energy and Reserve with Congestion:
Consumer payment ($), Expected cost of supplying energy ($), and Duality
gap (%). 156
Table 5.17 Case 2: Risk-Averse Energy and Reserve: Consumer payment
($), Expected cost of supplying energy ($), and Duality gap (%). 158
Table 5.18 Case 2: Risk-neutral Energy Only: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%). 158
Table 5.19 Case 3: Risk-neutral Energy and Reserve: Consumer payment
($), Expected cost of supplying energy ($), and Duality gap (%). 158
Table 5.20 Case 3: Risk-neutral Energy and Reserve with Congestion:
Consumer payment ($), Expected cost of supplying energy ($), and Duality
gap (%). 159
Table 5.21 Case 3: Risk-Averse Energy and Reserve: Consumer payment
($), Expected cost of supplying energy ($), and Duality gap (%). 159
Table 5.22 Case 3: Risk-neutral Energy Only: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%). 160
Table 5.23 Case 2: Computational Analysis 160



...it is not at all natural that "laws of nature"
exist, much less that man is able to discover

them.

Wigner, E.P. (1960)., "The unreasonable effectiveness of mathematics in
the natural sciences. Richard Courant lecture in mathematical sciences

delivered at New York University, May 11, 1959". Communications on Pure
and Applied Mathematics. 13 (1): 1–14.



1
Introduction

1.1
Context and motivation

Climate change and its irreversible hazards, e.g., heat waves, floods,
wildfires and floods, are pressing the need for restraining emission of greenhouse
gases. This has been stimulated by international agreements. In Paris in
2016, at the UN Climate Change Conference (COP21), 196 countries adopted
an international treaty on climate change. Ambitious strategies have been
formulated, such as the EU’s Green Deal which aims to achieve climate
neutrality within the EU by 2050, setting intermediate objectives of an at
least 55% reduction in greenhouse gas emissions by 2030, relative to 1990 [1].
Implementation requires an economic, industrial and social transformation.
Governments have initiated institutional, legal and market reforms, they invest
in grid infrastructure, and create incentives to stimulate renewable energy
generation, its integration into power grids, as well as technological progress
required to catalyse the green transition.

Power systems are at the heart of the energy transition, as the core of the
decarbonisation agenda involves boosting renewable power production, and, to
the extent possible, electrification of industries, mobility and households. This
poses several and significant challenges to power grid operations, which must
be addressed to make the transition successful.

The conventional structure of power systems, their evolution and tech-
nical challenges in view of the energy transition are outlined next:

The structure of power systems
Power systems are traditionally operated vertically, and power flows are to
a large extent predictable, uni-directional, and from top to bottom. Physical
layer of power systems is built on four subsystems, consisting of generation,
transmission, distribution, and supply [2]. At the top, the generation subsystem
incorporates all energy-production facilities. The transmission subsystem is the
network of electricity freeways transporting bulk quantities of electrical energy
from production locations to the distribution areas. Transmission takes place
through alternating current (AC) transmission lines with a high voltage level
of 100 kV to 600 kV, or through direct current (DC) power lines for very long
distances, typically at 500 kV. The transmission subsystems tend to be meshed
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networks, involving loop structured circuits with buses (nodes) and lines.
The distribution subsystem channels electrical power from the transmission
subsystem into consumption areas at the bottom. This network operates at
20kV and characteristically has a radial, tree-like structure, for robustness and
protection reasons. Finally, the supply subsystem supplies the generated power
to the end-user with protection and metering equipment. The system uses low
voltage - typically 100 V in the USA and 200 V in Europe.

Power transformers in each subsystems interconnect the different voltage
levels, e.g., from generation to transmission and transmission to distribution
etc. Transmission, distribution, and supply subsystems are commonly operated
and monitored by different entities, so-called network, or system operators.

Conventionally, distribution networks have been passive, and reliant on
the transmission network for energy supply, frequency control and voltage
regulation.

Decarbonisation strategies – impact on power systems and grids
The green ambitions are, for example in the EU-countries and the US,
pushed forward through incentives and industrial policies, aimed at households,
the private sector, research and technological progress. Together with the
potentially low, theoretically zero, per unit (marginal) cost of renewable
generation this has spurred renewable power generation in recent times.

This trend has severe implications for power systems and modern grid
design, due to growing renewable production and electricity consumption
leading to developments on both the supply and the demand side.

On the latter side these developments are driven by growing demand from
households, businesses, industry and for mobility. On the supply side, renew-
able power generation is, apart from hydro and biomass, non-dispatchable. In
other words, the control over production is, partly or fully, not at the producer’s
discretion [3]. At the same time, the output has weather-dependency, limited
predictability, and is stochastic. Renewable energy generators are connected
to the network via power-electronic interfaces converting DC output power
into AC, which demonstrate a different behaviour compared with conventional
synchronous generators, among others due to their low inertia. As a conse-
quence, the total inertia of the system may become insufficient to compensate
for disturbances of power balance, leading to relatively large frequency devi-
ations which affects dynamic stability of the system in case of faults and dis-
turbances [4]. These features differ from generation with conventional sources
such as coal, natural gas or nuclear.

Furthermore, large-scale generators at the high- or medium- voltage levels
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are nowadays joined by units acting both on the generation and consumption
side who thus bring bi-directional power flows to the grid. This latter group
consists of households and businesses producing energy via, e.g., photovoltaic
(solar) systems, cogenerating plants, wind turbines, small hydro plants, fuel
cells and microgeneration as well as using storage systems (such as batteries),
electric vehicles and heat pumps. These so-called distributed energy resources
(DERs) are mainly located at a medium- or low-voltage level, at the edge of
the grid and often behind-the-meter because of being located on the client’s
side of the utility meter [5].

These trends imply new dynamics for which grids were not designed. On
the transmission level, net-demand structures are becoming more volatile, e.g.,
due to timing mismatch between industrial-scale renewable generation and
consumption. At the same time, system operators need to balance demand
and supply at any point in time.

Network congestion and flexibility
The described new, growing and unpredictable loads through, e.g., heat pumps
and electric vehicles, as well as volatile renewable generation give rise to system
bottlenecks, such as network congestion and voltage problems [6].

Network congestion is defined as a situation in which demand for active
power is higher than the transfer capacity of the network [7]. Grid conges-
tion has conventionally been managed by transmission system operators, but
it is becoming a task of distribution system operators as well, because of bi-
directional and unpredictable power flows by DERs and proactive demand.
Congestion in distribution systems is traditionally mitigated through grid re-
inforcement by increasing the hosting capacity for cables, feeders, and trans-
formers. According to the European Standard (EN50160), voltage deviations
measured on a 10-minutes granularity should not exceed ±10% of its nominal
value on a weekly basis [8]. This has become challenging to maintain in modern
distribution grids.

Flexibility is defined as the ability of the grid to react to price or
activation signals to increase or decrease generation or consumption. At
transmission system level, flexibility can provide stability, frequency control
and energy supply management, whereas at the distribution level, it may be
used to mitigate congestion and voltage fluctuations. Storage systems such
as batteries potentially assist in mitigating these bottlenecks, as they enable
the shifting of excess generation towards low demand hours [2]. Additionally,
especially in case of a large number of DERs in the system, energy storage can
assist in compensating for disturbances of power balance leading to relatively
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large frequency deviations, as the total inertia of the system may become
insufficient [4].

If coordinated, the above-mentioned DERs at-the-edge can jointly pro-
vide services to the grid, such as providing fast-reacting ancillary reserves to
the transmission system or congestion management services to the distribution
system. These services have an activation time of fractions of a second to
months and even years for long-term adequacy [9]. Acting as a bottom-up flex-
ibility provider these coordinated DERs can reduce or increase consumption,
and hence pro-actively participate in grid operations from the demand-side.
These actions are typically based on price signals aimed to be reflective of
grid conditions at any given point in time.

Modernization of grids
Due to the green agenda and the various interlinked developments surrounding
renewable power generation described above, the grids are to be modernised
to continue to effectively play their role. To facilitate modernisation of aging
grid, there is a need to reinforce the grid, replace existing components and
investment in digitalisation, or so-called smart grid deployment. Smart grids
include advanced communication of control technologies to enable an efficient
and economically viable grid management. This applies particularly to distri-
bution grids, as transmission networks to a large extent already possess these
technologies [2]. Monitoring smart grids has lately been the focus with a vast
deployment of phasor measurement units (PMUs), advanced substations and
smart meters (globally) [10] to foster situational awareness of grids which are
exposed to instant dynamics of loads and electro-mechanical interactions of
generators. In fact, a rapid adoption rate of digital grid edge technologies to
monitor DERs, which are power electronics interfaced, is anticipated within
the coming decade.

Power system operations
Power system operations concern short-term decisions made by transmission or
distribution system operators customarily within a time frame of one month
to minutes or seconds ahead of actual power delivery, and tend to base on
one most likely generation or demand scenario. Planning within a month
period involves, for instance, preventive maintenance of components. Day-
ahead planning refers to to the procurement of reserves as a backup against
potential contingencies in the network as well as the scheduling of generators.
Intraday decisions concern certain adjustments to day-ahead dispatch made by
operators to account for changes in forecast and procure additional reserves
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if needed. Operating decisions finally, which take place within minutes prior
to actual delivery, focus mainly on security and control related activities by
actual dispatching of generators to ascertain that technical grid-requirements
are met, such as voltage levels and transmission line capacity limits.

Current system-operational tools for short-term planning are mainly
based on a steady-state situation of the grid with the ability to stay in
equilibrium following a gradual change of system state, indicated on the basis
of voltage and current levels, and phase angles at the nodes of the grid.

Power systems are transitioning from ’vertically operated’ structures into
’horizontally operated’ structures. Large, uneconomical or aged power plants
are being decommissioned, which gives rise to a power system with a large
number of DERs at the distribution networks with a horizontal, bidirectional
power flows [4]. As a consequence of this, the foremost objective of the trans-
mission system is becoming interconnecting the ’active distribution networks’,
i.e., networks which are able to control DERs where their flexibility is used
by distribution system operators to operate and regulate system parameters,
without much support from transmission networks. Voltage stability of such a
system is a challenge, which is no longer imposed by large generation units.

Power flow computation
Power flow, or load flow, computation is among the most significant tools
for system operators determining the steady-state behaviour [11] by specifying
voltage magnitude and phase angle at each bus of the grid at a given generation
and consumption. The computation typically incorporates voltage magnitude
constraints per bus as well as power losses and is based on the laws of physics,
namely Kirchhoff’s Laws and Ohm’s Law.

Within this general class of computation problems, optimal power flow
(OPF) computation typically seeks to obtain voltage magnitude, phase angle
and other operational constraints, e.g., generator minimum and maximum out-
put, transmission stability, and line capacity limits, under an objective of min-
imum costs. Decisions on switching of components, e.g. in case of equipment
failure or simply to start-up or shut-down a running unit, are also included
in the formulation. This inclusion is relevant for planning purposes, namely
to decide upon how much power to dispatch or how to schedule the equip-
ment to generate sufficient power to meet forecast demand. Such a scheduling
related optimisation problem is called a unit commitment (UC), commonly
used for day-ahead planning of system operations. Its formulation with net-
work constraints is called network-constrained UC (or NCUC). Inclusion of
contingency related aspects makes the problem security-constrained unit com-
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mitment (SCUC), commonly solved for control purposes minutes or seconds
before power delivery. These problems are solved by system operators multiple
times a day in each electrical control center. A computationally fast, robust
and scalable technique is still not available to solve these problems [12, 13].
Often, in fact, approximations, decompositions, or simply judgement is used
to seek a reasonably acceptable solution. Inaccuracy of the obtained solutions,
can lead to environmental hazard because of carbon emissions due to, e.g., un-
necessary activation of non-renewable-based sources, wasted energy as well as
other inefficiencies or costs for using resources such as additional re-dispatch.

In electrical terms, power flow is alternating current (AC). The optimal
power flow formulations which apply exact AC equations are called AC OPF.
Due to computational complexity for solving AC OPF or related problems
such as AC NCUC, simplifications involving linearisation of power flow equa-
tions are made. Among the most common simplifications is direct current
(DC) optimal power flow (DC OPF), or for unit commitment DC NCUC.
1. DC OPF, among others, assumes that voltage magnitudes are close to
constant and do not vary significantly, and voltage angles are close to zero.

Modern power systems and model accuracy
This thesis does not focus on a power system of any specific country or jurisdic-
tion, and attempts to provide methods which are as generalisable as possible.
The market structures are based on liberalised electricity markets. Modern
power systems refer to systems in which technological innovations, such as
inverter- or power electronics- based distributed energy generation, renewable
energy sources, energy storage systems as well as advanced communication
systems are available.

In modern power systems, due to variability and power electronics-related
components, the system operating state can be subject to instant or structural
deviations causing branch congestion and voltage problems. Therefore, the
underlying assumptions for simplified power flow models, such as DC OPF,
may not be realistic in a more dynamic grid. Improved accuracy of power
flow models, on the other hand, enhance effectiveness of system operational
control [14]. In addition, anticipated usage of modern power systems towards
their limits through capacity optimisation, accuracy and efficiency of power
flow computation techniques becomes increasingly important to determine
steady state behaviour of the network for a given level of demand and supply.
Furthermore, accuracy of the models assists in maintaining value of the system

1Note that DC OPF is a naming for this simplification, is not equal to a power flow
solution to a DC network [12]
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components through more effective control for their degradation.
Model accuracy, in fact, is a significant challenge in modern power

systems. Because of unpredictability of various parameters, such as wind
speed and solar irradiation, models can provide outputs which can be far
from reality [15], sometimes measurable by smart devices. The latter can give
rise to inaccurate conclusions, expose system design and decision making to
risks. Complex optimisation problems need to be solved to achieve a higher
accuracy, e.g., for prediction of power flows, incorporation of DER-driven
uncertainties.

Zero marginal cost renewables and non-convexities from market perspec-
tive
Furthermore, day-ahead energy and reserve scheduling for at least some mod-
ern power systems, such as in the United States, is performed out of a solution
to a least-cost DC network-constrained unit commitment (DC NCUC) problem
[16, 17, 18]. Market clearing price is based on marginal costs and per location
or node in the network in some jurisdictions, named as locational marginal
pricing (LMP). One of the challenges in modern power systems with massive
renewables is the fact that the prices can drop to zero and negative when such
generation is abundant. The latter is due to close to zero marginal costs for
renewables. On the other hand, if the production is not sufficient, then prices
can rise to a significant amount. These can be aggravated in case the grid is
subject to bottlenecks, such as congestion. One of the aspects which the regu-
lators are concerned about, e.g., in the European Union, is how to remunerate
generation assets. Operational switching decisions leading to non-convex math-
ematical optimisation problems. The clearing prices in the current applications
do not consider the non-zero duality gap of these non-convex problems, causing
incentive misalignment. Non-convexity as well as incorporation of stochasticity
to the decision-making framework for system operators induces complex opti-
misation problems which can be hard to solve within the time limits available
to operators for day-ahead and real-time scheduling purposes.

1.2
Objectives

This thesis explores challenges in modern power system operations and
pricing, where an improved approximation of the physical laws governing
power flows, incorporation of stochasticity and addressing non-convexity in
the pricing models and more efficient computational methods to tackle these
points can provide benefits to efficiency and effectiveness of power system
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operations. The main objective of the thesis is as follows:

To improve computational capability and model accuracy for
i) AC Network-Constrained Unit Commitment (AC NCUC) and Optimal

Power Flow (OPF) for solo operations as well as coordinated transmission and
distribution system operations to mitigate congestion and voltage problems
with a limited network information interchange;

ii) locational marginal pricing (LMP) for DC NCUC for transmission
systems under non-convex operational decisions and stochastic renewable
generation (RES).

Both objectives are grouped into research directions, and detailed next.

1.3
Research directions

This main objective is grouped into three research directions:

Chapter 3: The first research direction concentrates on the methodolog-
ical foundation for reducing computational load in AC unit commitment and
optimal power flow calculations.

Chapter 4: The second research direction applies these methodological
principles to the coordination problem amongst multiple Distribution System
Operators (DSOs) and Transmission System Operators (TSOs), introducing
novel techniques for managing congestion and voltage problems with compu-
tational savings, thereby enabling more efficient power system operations.

Chapter 5: The last research direction proposes a new price computation
mechanism within a similar framework. The complexities here principally stem
from addressing the pricing of non-convex operational decisions and stochas-
ticity, where conventional marginal-pricing approaches reach their limits.

These three research directions can demonstrate the significance of
employing AC optimal power flow models, coordination amongst multiple
DSO and TSO entities, endogenous pricing of non-convex energy and reserve
scheduling involving uncertainties in modern power systems, and the computa-
tional challenges associated with such modeling. The thesis proposes metrics
for evaluating these benefits and computational methods that enhance the
current state-of-the-art techniques for such complex mathematical models.

The specific background for the three research directions is detailed next.
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1.3.1
Computational techniques and model accuracy in AC NCUC and optimal
power flow

In modern power systems, existing modelling frameworks for power flow
modelling mainly based on DC linear approximation, ignoring reactive power
and voltage, is becoming insufficient, necessitating more detailed modeling.
A key aspect of this involves simplifying the power flow equations describing
physical laws, namely Kirchhoff’s laws, which are non-convex. The feasible
region for OPF problems, being non-convex, results in the possibility of non-
unique local optimal solutions. One main difficulty is which local solution to
choose and how good they are [19], and they tend to result in solutions close
to their initialisation set-points [13]. One of the main frameworks for simpli-
fication of power flow equations striving towards obtaining globally optimal
decision-variables is based on convex relaxation techniques, i.e., approximat-
ing the feasibility region of a non-convex problem represented by a tightest
possible convex region.

Second-order cone programming (SOCP) is one of the common
convexification-based techniques used to solve AC network-constrained unit
commitment (AC NCUC) and optimal power flow problems [20]. The main
shortcoming of this approach is the computational complexity increasing ex-
ponentially with the system size. Noted is also that at least under normal op-
erating conditions for various cases the power injections and flows computed
from the convex relaxations may be close to those of the true global solution
to the original non-convex problem. However, even under such conditions, the
optimal voltage phase results tend to deviate from the global solution. Ad-
ditionally, especially under high-system loading conditions, the optimisation
results from convex relaxations may not be exact, i.e., deviation between the
global solution to the non-convex problem and that of the relaxed problem
[13]. Computing power flow as a convex relaxation, such as semi-definite pro-
gramming (SDP) and its variants regarded as the tightest of such relaxations
under certain conditions, entail prohibitively high computational burden with
increasing network size [19]. This aspect motivates usage of second-order-cone
programming-based techniques in practice, though they tend to be, in general,
weaker than SDP.

Following these arguments, this research line focuses on enhancing power
grid operations by employing a more accurate model of the physical laws
governing power grids, namely the AC power flow. More specifically, this
thesis addresses how model accuracy for AC NCUC and OPF (non-convex)
be enhanced so that a minimum deviation from a true global solution can be
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obtained with computational savings against established convex relaxations,
such as Second-Order-Cone Programming (SOCP).

1.3.2
Computational techniques and model accuracy in multi-agent DSO-TSO
coordination for congestion and voltage management

Power systems are traditionally operated under a centralised approach,
i.e., a central operator - typically a transmission system operator - that has a
perfect knowledge of the transmission system, with economical and technical
data required, viewing distribution system as a passive load with power flows
with one direction from transmission into distribution [2]. Applying optimal
control principles, the operator plans and operates the system by matching
demand and supply at a minimum cost. The operator takes necessary decisions
and inform generators and consumers on what and when to do. Similarly,
distribution systems are traditionally reliant on transmission systems for power
supply. Both systems ignore the state of each other in their planning.

Smart electric power systems’ physical structure, however, is increasingly
distributed with bi-directional power flows. Various entities, such as distribu-
tion and transmission system operators and market actors, interact in this
system as well as take responsibility in a certain part of the system.

Congestion and voltage management are becoming increasingly impor-
tant for operations and control in transmission and distribution systems with
a large share of renewable generation [21]. Such control procedures can be
effectively incorporated in AC optimal power flow and unit commitment as
energy management algorithms. A variety of solution techniques are available
for such algorithms, such as centrally as a problem of one single controlling
entity. This approach is not realistic because of being reliant on optimisation of
system costs cumulatively through a central-planner assuming to have full vis-
ibility or direct control of the overall power system [22, 23]. It also ignores the
individual optimisation of system operators, and their competition with one
another, and may not always scale well for computational purposes [24]. The
privacy of network data amongst the involved entities as well as the DERs may
not be maintained. Interconnectedness of systems, such as transmission, and
distribution managed by different entities, also implies that control decisions
of one entity would affect the other. The involved entities need to coordinate
for efficiency and effectiveness of control in order to assure system reliability.

Distributed algorithms often lack convergence guarantees for multiple
sub-systems, which is in practice the case, and suffer from numerical issues, and
their performance depend on the choice of a priori decision-dependent penalty
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parameters. In the general case, a necessity to have a central coordinator for
data communication may not be practicable, or data storage and transfer may
not be optimal.

To address these issues, distributed solution algorithms are proposed for
AC OPF or NCUC, where a coordinating entity may need to aggregate the
variables which are to be coordinated between the entities to reach to a sys-
tem goal, such as minimisation of system costs while reliable operations can be
assured for the entire system. Distributed approaches enable computation of
equilibrium set-points for different systems concerned while balancing the com-
mon resources [25]. Another advantage of distributed solution algorithms is in
terms of cybersecurity, data storage and grid data privacy. There are numer-
ous reasons why data in relation to power grid are preferably not shared. For
instance, grid data can reveal some vulnerabilities of the grid, and an attacker
can make use of this to manipulate grid operations [26]. Minimum data transfer
between different entities, locations or smart devices can assist safeguarding
important data. Hence, these algorithms enable scalable, reliable solutions and
have advantages in terms of communication requirements between entities or
components [27].

Based on this background, this research line investigates how distributed
and decentralised optimisation algorithms can be applied to mitigate conges-
tion and voltage problems in a coordinated way between distribution and
transmission as well as amongst multiple distribution systems with reduced
data interchange needs while computational capability and model convergence
are enhanced. It also addresses AC optimal power flow computation accuracy,
which can bring benefits for multi-agent DSO-TSO coordination by optimising
the power flows at the interface of the entities.

1.3.3
Computational techniques and model accuracy in energy scheduling and
pricing in power systems

This research line explores the challenges for integrating renewable
sources into power systems in terms of operation and pricing, particularly
regarding energy and reserve scheduling with associated market design.

High levels of renewable penetration into power systems as well as op-
erational features of system components or one-off cost structures represented
by binaries are increasingly inducing misalignment between operations and
prices [28, 29]. It is because existing energy scheduling schemes inherently have
non-convex features which are not adequately captured in existing modelling.
Accordingly, post-clearance settlements such as uplift are applied in order to
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remunerate generators for these one-off costs. However, uplift payments are
not reflected in the clearing prices, distorting price signals.

Additionally, electricity market-clearing around the globe is based on a
deterministic modelling approach that relies on a single, most likely scenario.
This is challenged by variability of renewable generation and demand, leading
to large forecast errors in jurisdictions, e.g., Australia where renewables are
deployed on a massive scale [30, 28]. Additionally, unpredictable congestion or
bottlenecks can occur when generation in real-time is much higher than an-
ticipated exceeding the hosting capacity of the network. Accordingly, a costly
balancing might be needed in the system through re-dispatch of expensive
generation sources in real-time. In order to accommodate the forecast impre-
cision, a stochastic modeling approach is applied, which considers the nature
of uncertainty represented by a probability distribution. Due to this feature, it
is considered to be an appropriate decision-making approach for systems with
a high share of renewable sources [31]. On top of this, system operators need
a certain degree of robustness in their decisions to be able to meet demand
and supply at a least possible deviation from social welfare under unexpected
scenarios [32].

Energy-only markets, mainly applied in the European countries, do
not schedule reserves during the day-ahead stage, and assume that they are
available in real-time. However, it is shown by [33] that a co-optimisation
between energy and reserves at that stage can decrease costs for supplying
energy. This practice, according to [30], increase efficiency, transparency, and
fairness.

Furthermore, such DC NCUC optimisation problems for energy and re-
serve scheduling with stochastic variables on real large-scale power transmis-
sion systems accounting for bottlenecks and real-time re-dispatch of generation
may not be efficiently solved by commercial solvers or standard algorithms [34],
and are typically NP-hard [35].

On the back of these, this research line addresses how model accuracy
and computational capability for energy and reserve scheduling be improved
in a risk-controlled manner to derive locational marginal pricing (LMP) for
DC transmission systems with non-convex operational features and stochastic
renewable generation.

1.4
Scientific contributions

The main contributions of this work are as follows:
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A) Chapter 3: To devise a framework and an algorithm in relation to en-
hancement of accuracy for AC OPF / UC (non-convex) so that global optimal
solutions to the convexified problem can be obtained with computational
savings against established convex relaxations, such as Second-Order-Cone
Programming (SOCP).

i) To develop a decomposition algorithm to approximate the non-convex
feasibility region for the AC unit commitment and optimal power flow problem.

ii) To perform computational experiments in the form of performance
curves benchmarking the proposed algorithm against solving SOCP formula-
tion with off-the-shelf commercial solvers.

B) Chapter 4: To propose a decentralised optimisation algorithm to mitigate
congestion and voltage problems in a coordinated way between distribution
and transmission systems with a limited network information interchange
while computational capability, convergence guarantees towards an approx-
imate stationary solution for multi-block problems, and model accuracy for
AC optimal power flow are enhanced.

i) To develop a computationally efficient global optimal solution proce-
dure for the convexified DSO-TSO congestion management and voltage control
coordination problem, based on a two-level nested decentralised ADMM frame-
work requiring limited network data interchange with convergence guarantees
to an approximate stationary solution for multi-block problems.

ii) To enhance the power flow modelling in DSO-TSO coordination for
congestion and voltage management in order to closely align transmission and
distribution system operations.

iii) To implement the linearisation and decomposition of AC UC OPF
method proposed in Contribution A) within the context of a DSO-TSO coor-
dination problem for the accuracy of modelling for power flow at the interface
of the system operators.

C) Chapter 5: To propose a risk-controlled solution framework for the
improvement of DC-NCUC model accuracy and computational capability
to derive locational marginal pricing (LMP) for transmission systems with
non-convex operational structures and stochastic renewable generation.

i) To address the day-ahead energy and endogenous reserve scheduling as
a multi-commodity product taking into account the stochastic balancing stage
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and scale-up the numerical analysis to larger power networks to gain insights
on realistic systems.

ii) To incorporate a risk aversion profile to the system operator for
meeting demand and supply under uncertain renewable power generation,
mimicking the daily decision process of operators in practice.

iii) To provide a comparison of the energy and reserve scheduling out-
comes from the perspective of provision of cost recovery or limiting windfall
profits via a revenue cap for the generation companies under different pricing
schemes.

iv) To design an efficient procedure to tackle the bi-linear optimisation
problem to improve the computational compatibility to handle the energy and
reserve scheduling process.

1.5
Thesis outline

Chapter 2 presents methodological background for all contributions.
Particularly, the Chapter starts by introducing and comparing Convex re-
laxation and approximation techniques for optimal power flow in relation to
[Paper A]-[Paper B]. Namely, linear- and quadratic- programming based ap-
proaches, DC power flow, second-order cone programming, semi-definite pro-
gramming and hybrid approaches are presented. Later in the Chapter an outer
approximation, linked to [Paper A]-[Paper B], is outlined. Furthermore, dis-
tributed optimisation is introduced and the general approach of the alternating
directional method of multipliers, related to [Paper B], is presented. Later of
the Chapter is devoted to the methodological aspects of [Paper C]-[Paper
D]. These are in relation to stochastic optimisation, bi-linear optimisation as
well as risk measures to control risk in these problems. Chapter 3 presents
thesis contributions to a more accurate convex approximation of AC unit com-
mitment and optimal power flow when compared to the widely applied and
reasonably accurate technique under mild conditions, Second-Order Cone Pro-
gramming, a computationally efficient decomposition algorithm according to
[Paper A]. This Chapter introduces the AC unit commitment and optimal
power problem in its general form, for which the SOCP reformulation is driven.
The proposed approximation and linearisation technique is presented. Later
part of the Chapter is devoted to constructing an algorithm for the purpose of
efficiency of the proposed procedure.

Chapter 4 presents thesis contributions on efficient solutions to solve a
multi-agent DSO-TSO coordination problem at the interface of high-voltage
network with battery energy storage systems and medium-voltage levels for ad-
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dressing congestion and voltage management problems with a limited network
information interchange between operators. This chapter relates to [Paper B].
This Chapter introduces centralised and decentralised mathematical optimisa-
tion problems for each system operator, based on an optimal power flow type of
modelling. The Chapter is further devoted into distributed and decentralised
algorithms striving towards minimum data transfer. In addition, accuracy and
computational efficiency of the power flow modelling is addressed based on
[Paper A].

Chapter 5 presents thesis contributions towards accuracy of pricing non-
convex unit commitment problems to schedule energy and reserves for the day-
ahead stage considering a stochastic approach on the balancing stage as well
as a robustness of system-operator decisions. The Chapter proposes various
pricing schemes and a computationally efficient procedure to solve such mixed
integer bi-linear programming problems. It provides main results of [Paper
C] -[Paper D].

Chapter 6 provides a summary of the overall main results, limitations of
the thesis and future research directions.

1.6
List of publications

Publications part of the thesis

The following publications constitute the core of this thesis:

[Paper A] Martin, N. C., & Fanzeres, B. (2023, June). Linearisation
Based Decomposition Method for Circle Approximation in AC Network Con-
strained Unit Commitment. In 2023 IEEE Belgrade PowerTech (pp. 1-6).
IEEE.

[Paper B] Martin, N. C., & Fanzeres, B. A Two-Level ADMM Algorithm
for Multi-Agent DSO-TSO Congestion Management and Voltage Control Co-
ordination with Limited Information Exchange. In process of publication.

[Paper C] Martin, N. C., & Fanzeres, B. (2023). Stochastic risk-averse
energy and reserve scheduling and pricing schemes with non-convexities and
revenue caps. Electric Power Systems Research, 225, 109858.

[Paper D] Martin, N. C., & Fanzeres, B. (2023, September). A Stochas-
tic Risk-Averse Model to Price Energy in Pool-Based Electricity Markets with
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Non-Convex Costs and Revenue Caps. In 2023 International Conference on
Smart Energy Systems and Technologies (SEST) (pp. 1-6). IEEE.



2
Methodological Background

This section will provide a background on the main methodological con-
cepts applied in the thesis, namely i) convex relaxations and approximations for
AC optimal power flow; ii) outer approximation; iii) distributed, decentralised
computation of optimal power flow; iv) stochastic optimisation; bi-linear opti-
misation; and, v) risk measures and control.

2.1
Convex relaxations and approximations for AC Optimal Power Flow

Power flow computation
Power flow formulations establish relationship between voltage phasors and
power injections at nodes (buses) in any power system [13]. These equations are
fundamental for power system operational optimisation- and control-related
problems, such as optimal power flow (OPF), unit commitment (UC), state
estimation, dynamic stability and voltage stability assessment or short-term
security or contingency analysis. In addition, they are also incorporated in
medium- and long-term planning models, e.g., for maintenance scheduling and
generation or transmission expansion planning [2].

Power flow computation analyses the power system in its steady-state,
i.e., focuses on a snapshot of power system operations, not its dynamic evolu-
tion.

Radial and meshed network configurations
Before going into further details on power flow computation, a description
of the most common network configuration, namely radial and meshed, is
provided next:

Radial configuration is a tree-like network structure where there are no
closed loops. It is the simplest and cheapest network topology. In a radial
system, generators at the starting point are linked to the load center by means
of distribution transformers. Circuit protection scheme for radial networks is
straightforward in terms of design and coordination as well as implementation
of a reactive power compensation [36]. Since substation tends to be close to
loads, a radial network configuration is easy to analyse and operate. Low
cost and such straightforwardness of radial configuration make it interesting
especially for low-voltage networks. Its principal disadvantage is its limited
flexibility in view of system planning, since in case new generation and loads
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to be added to the system, new cables and other components need to be
installed. In addition, connected parties in such a network are reliant on a
single feeder, and any fault leads to interruption for the entire users connected
to the feeder. Power availability for each load can be lower compared to, e.g.,
meshed networks because of the complexity of maintenance.

Meshed networks allow an alternative route with redundant circuits.
A meshed distribution network is based on a ring structure, starting from
a generator through various loads and back to the generator. All buses are
interlinked in such a way that they constitute a closed loop, supplying distri-
bution transformers or loads, and go back to the same substation. Power can
be supplied to the loads in any direction, which makes is advantageous for
isolating faults and supplying loads in case of a failure.

Optimal power flow
As a power flow computation method, OPF is defined as a mathematical
optimisation problem which seeks to minimise an objective function - e.g, total
generation cost, power loss - subject to Kirchhoff’s laws, capacity, stability
and security constraints [37]. OPF problem was first put forward by [38].
Since then, there has been a rich body of research for solving OPF and
related problems in different power system configurations. In fact, this thesis
focuses on a balanced, radial, single-phase-equivalent distribution networks
as well as transmission networks. Therefore, this Chapter mainly outlines
optimisation-based techniques applicable to these settings. Note that most
power systems tend to be not radial in practice [19].Especially transmission
networks and medium-voltage distribution networks are commonly meshed.
However, because of radial networks’ sparsity and simplicity compared to
meshed networks, they are assumed to be the case in the literature especially
in the analysis of distribution networks. In practice power systems tend to be
sparse, having less than 0.05% connections between the buses [13].

Optimal power flow is frequently applied in combination with unit
commitment variables, i.e., in order to schedule energy and reserve providing
generation sources to meet demand.

The main difficulty of solving OPF is the fact that active and reactive
power flows in a branch or transmission line is a non-convex function of bus
voltages and phase angles. This difficulty can magnify when binary variables
related to UC are also incorporated. Problems such as OPF and UC are
classified as NP-hard even when radial networks are involved [39].

Accuracy of power flow modelling is of great importance, because network
lines can become dangerously congested if for instance the calculated power
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flow underestimates the actual power flowing through the lines. An overesti-
mate of congestion can imply additional market costs for re-dispatch. In both
cases, system security monitoring would be impacted [40]. For instance, power
flows estimated under a DC approximation in MW can be sometimes just a
few percentages different than AC estimates, but the differences can also be
at times alarmingly high [40]. When the power flow calculations on potentially
binding network elements differ from reality, this is critical. In general, inac-
curacy of power flow can cause distortion of system dispatch and Locational
Marginal Pricing (LMP). DC model can result in infeasible or sub-optimal
solutions [41].

First solution method for the OPF problem was introduced by [42] based
on a Newton’s method and its variants. AC OPF for distribution networks
are, for instance, solved by Newton-Raphson (NR) method. This method,
however, tends to converge slowly and there is no convergence guarantee to a
solution [43].

Local optimal vs. global optimum solutions to optimal power flow
At least some OPF formulations with non-convex constraints can be solved
via non-linear solvers directly. Local optimal or stationary points using non-
linear techniques, such as based on interior point methods or metaheuristic
techniques are applied. The feasible region being non-convex gives rise to the
possibility of non-unique local optimal solutions, not a global optimum solution
to the OPF problem. Nor may these solutions provide any evidence on how
good the obtained solution is [19]. In [44], it is observed in some examples
having multiple local optima that interior point algorithms tend to converge to
local solutions which are closest to the initial guess. In general, a ’high-voltage,
small-angle-difference’ is typically more interesting for finding a good operating
point. ’Low-voltage, large-angle-difference’ solutions are typically used for
specific purposes, such as stability analysis [13, 44, 45]. Nevertheless, global
optimum solution to OPF problems can tend to be much slower than local
optimal ones [44], being their disadvantage. Hence, it is important to develop
efficient globally optimal methods for solving OPF and related problems [19].
Global optimal techniques to OPF problems are still in their infancy, and much
research is needed searching for computationally efficient solutions [19]. This
section of the thesis focuses on convex relaxations and approximations, rather
than non-linear optimisation techniques.

It is worth to mention that, other than local optima and global optimal
solution-seeking type of algorithms, there is also a third category which at-
tempts to compromise between the two by making use of the lower and upper
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bounds provided while with the ambition to obtain nearly global optimal
solutions. For instance, a branch-and-bound type algorithm applied by [46]
combines a Lagrangian-relaxation-based approach to obtain a lower bound
and an interior-point based approach to obtain upper bounds to the global
optimal solution. It is shown that under the proposed approach, the duality
gap is observed to be zero for the test cases used. Because of the existence of
ramping constraints of the generation units in power systems, the generation
in the following period would have a limited degression from the previous
period. This feature also motivates analysis of lower bounds for the possibly
local solutions [19].

Convex relaxations and approximations to optimal power flow
In order to search for computationally efficient solutions to the OPF, relax-
ations or approximations for the non-convex feasible space of the original prob-
lem are applied [13]. Using the convexity property to achieve a global optimum
solution for the relaxed problem, there are a broad range of ’convex relax-
ation’ techniques for AC OPF problems, which approximate AC power flow
constraints by a convex outer approximation [47]. Details can be found in the
survey [13]. Convex relaxations provide a lower bound to the optimal objective
value for the original non-convex OPF. In addition, if certain conditions are
satisfied in some cases exactness of the relaxation is possible [19]. Note that
exactness of a relaxation is defined as one such that it gives a bound equivalent
to the global objective value. In other words, the obtained solution has a zero
optimality gap compared to the solution to the original non-convex problem.
Exactness does not imply that the obtained optimal decision variables from
the relaxation would give the global optimal decision variables to the original
problem. It is because in case the solution set for the relaxation is a connected
subset of the relaxation’s feasible space. all these non-unique solutions would
provide the same objective value to the relaxed problem, though some of these
solutions might be infeasible in the original non-convex problem [13].

Furthermore, convex relaxations can provide important information on
the problem itself. If the relaxed problem is infeasible, then, the original
problem is also infeasible. However, if the relaxation is feasible, it is not a
sufficient condition to guarantee that the original problem is feasible [13].

Relaxations typically extend the non-convex feasible region into a convex
region, namely ’convex envelope’, because of the convenience of the convexity
property for optimisation purposes. Hence, they typically do not cut original
feasibility space.

Approximations, on the other hand, make assumptions regarding certain



Chapter 2. Methodological Background 36

parameters and quantities, and simplify the power flow equations. The validity
of assumptions are important in order for the approximations to adequately
represent power system behaviour. Depending on the assumptions, in some
cases the approximations can cut the original feasibility space and some origi-
nally feasible operating points may not be represented. Various approximations
tend to sufficiently depict power flow under normal operating conditions.

Neither relaxations nor approximations exactly satisfy the power flow
equations, and they can give infeasible solutions. Nevertheless they try to
provide tractable solutions with sufficient representation of physical aspects
of the network.

Convex relations in general are based on i) linear or quadratic program-
ming; ii) Second-order cone programming (SOCP); and iii) semi-definite pro-
gramming (SDP).

Power flow equations can be formulated in a broad number of ways,
in order to explore different features of power systems or for computational
reasons, etc. There are two main broad categories: i) branch flow models; ii)
bus injection models. The latter is sub-grouped into I-V as well as voltage
based formulations. These are outlined in the next Section.

2.1.1
OPF model formulations

Different power flow equations are obtained by formulating and using
different representations of, e.g., admittance matrix, voltage phasors and
power injections. Additionally distinct focus on set of variables used or graph
theoretical representations of the network can be applied to reach to other
formulations.

2.1.1.1
Branch flow OPF models

Branch flow OPF formulations focus on current or power on each branch
(or line) variables rather than injected power quantities at each bus. Branch
flow formulations are mainly used for (low-voltage) distribution networks due
to the fact that they tend to be radial [48].

’Bus injection’ type of OPF models, on the other hand, are more
standard-applied model type, and they focus on nodal variables, such as voltage
and power injections per bus.

Both type of formulations are equivalent, and both contain non-convex
power flow equations. We observe, however, that in the literature though ’bus
injection’ is a common type, modal formulations with nodal variables can also
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include branch power flow variables. This is done by writing the Kirchhoff
current laws per branch level, instead of bus level. Both models are just a
representation of the Kirchhoff law for the same network. More details on
formal formulations as well as equivalence of both models can be found in
[48]. Numerous relaxations are devised in the literature for both formulations.

DistFlow equations
The DistFlow equations, as a branch flow model, is proposed by [49, 50].
These equations are exact analytical expressions for balanced, single-phase
equivalent model of a radial network. For meshed networks, one needs to
enforce additional constraints to address the consistency in the angles around
orientation of each phase angle. As such, the DistFlow equations provide
relaxed solutions when applied to meshed networks.

A power network is composed of various components, such as buses,
lines, generators and loads. Network is represented as a ’directed graph’ for this
formulation. Given L set of branches (i.e., lines) as ’directed’ links, and n→ m

denote a branch between sending bus n and receiving bus m, where m is located
downstream compared to n, i.e., more distant from the substation in a radial
distribution system. Active and reactive power flows from n to m are denoted
by pn,m and qn,m, respectively so that apparent power Sn,m = pn,m + i.qn,m.
Demanded power at the bus m is denoted by pm + i.qm so that Sm = pm + i.qm.
Let ln,m = |In,m|2 be the squared quantity of current flow ,In,m, from bus n

to m. Lines are modelled as series impedances Rn,m + i.Xn,m. The DistFlow
equations are given by [13]:

pn,m = Rn,m.ln,m − pm +
∑

k:n→k

pn,k, ∀ (n, m) ∈ L; (2-1)

qn,m = Xn,m.ln,m − qm +
∑

k:n→k

qn,k,∀ (n, m) ∈ L; (2-2)

|Vm|2 = |Vn|2 − 2.(Rn,m.pn,m + Xn,m.qn,m) + (R2
n,m + X2

n,m).ln,m,

∀ (n, m) ∈ L; (2-3)

ln,m.|Vn|2 = p2
n,m + q2

n,m,∀ (n, m) ∈ L; (2-4)

Note that the equations (2-3) – (2-4) are linear in |Vn|2. By setting this
term equal to a variable, one can get rid of the squared term, and obtain a
linear set of equations - except for (2-4) which is non-convex.



Chapter 2. Methodological Background 38

2.1.1.2
Bus injection OPF models

Bus injection OPF models are principally formulated based on active
and reactive power injected at each bus, rather than current flows at each line.
Different type of bus injection models exists, such as, I-V formulation or volt-
age based formulation as broader categories. These fundamental formulations
are mathematically equivalent. Various formulations are possible, and in fact,
an active area of research is to capture and efficiently solve different power
system problems.

I-V formulation for OPF
I-V formulation captures the fundamental aspects of AC power systems -
namely, linear relationship between the voltage phasors and current injection
phasors, as well as, power defined as a complex variable. In other words,

In =
∑

m∈Nn

Yn,m.Vm, ∀ n ∈ N ; (2-5)

pn + i.qn = Vn.In,∀ n ∈ N ; (2-6)

where each line < n, m >∈ L has an admittance given by the complex number
in rectangular coordinates Yn,m = Gn,m + i.Bn,m, where the parameters Gn,m

is the line susceptance and Bn,m is the line conductance.
Note that in this formulation the equation (2-6) is non-convex, due to a

bi-linear term. One of the advantages of the I-V formulation is the fact that it
is purely formulated at each bus level without any variables coupling different
buses [51].

Important to note that the formulation of admittance matrix Y con-
straints the network components to be voltage-controlled [41, 52]. Such a fixed
admittance matrix may not adequately represent elements such as ideal circuit
breakers, since current through the component as a function of voltage cannot
be expressed in the formulation when the circuit is closed. I-V formulations
aim to incorporate such features.

Voltage-based OPF formulations
Commonly applied polar coordinate formulation of OPF introduces non-linear
and non-convex constraints because of the power flow equations describing
Kirchhoff’s laws and Ohm’s law. Kirchhoff’s current law describes that for any
node in an electrical circuit, the sum of currents flowing into that node is equal
to the sum of currents flowing out of that respective node. Kirchhoff’s voltage
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law states that the directed sum of the voltages (or potential differences)
around any loop is equal to zero. Ohm’s law puts forward that electric current
through a conductor between two points is directly proportional to the voltage
across the two points.

OPF can be formulated as polar or rectangular coordinates, which are
equivalent to each other. The rectangular form can sometimes be preferred
due to the fact that the Hessian matrix of the constraints is constant, which is
convenient for applying interior point methods [19]. In case voltage magnitudes
are fixed at some of the buses, the polar formulation can yield some advantages
[19, 53].

Polar formulation uses voltage magnitude and phase angle at each bus,
active and reactive power flows as variables. Any angle can be changed by a
multiple of 2π without adjusting other variables [44], resulting in the same
solutions due to the properties of sinus and cosinus. This thesis uses a polar
coordinate formulation, which is the most common one. In the rectangular
coordinate formulation of OPF, bus voltages, being complex numbers, are
represented by their real and imaginary components.

A power network can be regarded as an ’undirected graph’ (hence, ’bus
injection’ formulation) where the set of buses N are the nodes of the graph and
the set of lines L are its edges [41]. Each bus n ∈ N has two features: a voltage
given by Vn = vn + i.vqn, and a power Sn = pn + i.qn, both being complex
numbers so that i =

√
−1. Variables vn and pn in real numbers represent

real voltage and power components, whereas vqn and qn represent imaginary
voltage and power components. As in the I-V formulation, let receiving bus
be denoted by m connected to sending bus n, so that m ∈ Nn. Each line
< n, m >∈ L has an admittance given by the complex number given in
rectangular coordinates, hence a ’rectangular voltage coordinate’ formulation
of power flow, Yn,m = Gn,m + i.Bn,m, where the parameters Gn,m is the line
susceptance and Bn,m is the line conductance, respectively. These network
parameters are connected with each other by two fundamental physical laws,
Kirchhoff’s Current Law, given by:

S̃n =
∑

(n,m)∈L
Sn,m,∀n ∈ N (2-7)

and Ohm’s Law, given by,

Sn,m = Vn.V n.Y n,m − Vn.V m.Y n,m,∀(n, m) ∈ L (2-8)
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All variables shown with (.) represent the complex conjugate of the correspond-
ing complex conjugate variable. An important point to note is the fact that
AC line power flows are not symmetric (which is a different feature than DC),
i.e., Sn,m ̸= −Sm,n. Due to this, set L consists of both (n, m) and (m, n) for
each line of the network. In addition, network components are assumed to be
voltage-controlled.

Different power flow equations are obtained by formulating and using
different representations of admittance matrix, voltage phasors and power
injections. A polar form can be written in an equivalent exponential way
by applying Euler’s formula given by ei.θn = Cos(θn) + i.Sin(θn). Hence,
voltage per bus can be represented by Vn = |Vn|.ei.θn = |Vn|∠θn, where
|Vn| is the modulus of the complex number Vn, where θ = arctan(vq/v)
measured in radians and θn ∈ (−π, π], and |Vn| =

√
v2

n + (vq)2
n > 0, as well

as |Vn|2 = Vn.V n. Note that it is a common way of formulating such problems
because power systems tend to operate near a nominal voltage, i.e, V n ≈ 1.0∠0.
Let Nn be the set of nodes which are receiving nodes for power flowing from
node n.

pn =
∑

m∈Nn

pn,m, ∀ n ∈ N ; (2-9)

qn =
∑

m∈Nn

qn,m, ∀ n ∈ N ; (2-10)

pn,m = Gn,m.|Vn|2 − |Vn|.|Vm|.(Gn,m.Cos(θn − θm) +

+ Bn,m.Sin(θn − θm)), ∀ m ∈ Nn, n ∈ N ; (2-11)

qn,m = −Bn,m.|Vn|2 + |Vn|.|Vm|.(Bn,m.Cos(θn − θm) +

−Gn,m.Sin(θn − θm)), ∀ m ∈ Nn, n ∈ N ; (2-12)

2.1.2
Linear-Programming approximations for AC Optimal Power Flow, DC
approximation

Large number of works in the literature restrict their attention to
active power flow especially given its computational advantages. To this
end, non-convex AC power flow equations are approximated by a number
of linear equations describing a DC power flow model [41]. Under normal
operating conditions and applying some adjustments to account for line losses,
it is observed that the DC power flow model leads to a fairly accurate
approximation of the inherently non-convex AC power flow equations for active
power [40]. These can be incorporated into different power system problems,
such as techno-economic analysis, market clearing type of purposes - e.g., a
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Unit Commitment problem, making it a mixed-integer problem. Approximated
by a DC power flow model, this results in a Mixed Integer Linear Programming
(MILP) problem, for the solution of which the solvers have made significant
progress over the last decades [54, 55]. It is particularly noted the progressive
increase of computational capacity and maturity level of the solvers to solve
MILPs.

Furthermore, non-convex or convexified AC power flow models can fail to
converge in case of severe contingency and standard re-dispatch of generators
following the changes in loading level [40]. This would be problematic in real-
world applications when, for instance post contingency occurs, and the security
limits of the system is still to be monitored.

Albeit its computational advantages, the DC power flow approximation
to AC power flow focuses on active power flow, and does not model reactive
power and voltage. Hence, it cannot be applied for some power system
problems, such as voltage management, capacitor placement. The DC power
flow model, in general, ignores transmission losses. In addition, the accuracy of
the DC approximation beyond normal operating conditions is debatable [56,
40]. Its accuracy for transmission systems is case-specific, and depends on the
power system, loading-conditions, flow patterns and transmission elements.
Some extensions in the literature provide approximations to transmission
losses, e.g., as in reference [57].

In case of a low voltage network and at a collapsing voltage level, AC
and DC results can be significantly different [40].

In addition, for distribution systems with high resistance to reactance
ratio R/X DC approximation is often not valid [58].

There are three main assumptions of the DC power flow model [59], so
that the approximation can be used with a degree of accuracy:

i) Voltage angle differences are small, i.e., sin(δ) = δ, so that

sin(θn − θm) ≈ θn − θm; (2-13)

Cos(θn − θm) ≈ 1 (2-14)

Although it is said that above approximations can only hold for weakly
loaded systems [59], empirical data on the voltage angle differences on the
Belgian HV system shows that these differences tend to be indeed small, on
average of 2%. Therefore, this condition 1 can be satisfied in practice.

ii) Line resistance is negligeble, reactance is much larger than resistance
i.e., R << X, implying lossless lines. X/R ratio is the tangent of the angle
created by reactance and resistance in a circuit. This condition, (negligibility of
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line resistance), is difficult to hold in practice except high voltage transmission
networks. It is because effect of resistance increases when voltage decreases.
Typical X/R ratio in a Belgian HV network is observed to be in the range
of 0.8 to 12.5 depending on the voltage level. For the accuracy of DC power
flow, it is empirically shown on a Belgian HV system that X/R > 4 would be
needed.

iii) Flat voltage profile, i.e., all voltages are equal and close to 1.0 per unit
(p.u.), and do not vary significantly. Deviations from the predefined value is
the most important issue here, rather than nominal values. Voltage deviations
result in line voltage differences, which cannot be captured in DC power flow.
This gives rise to an inaccurate estimate for the active power flow, which
is highly responsive to voltage variations. Flat voltage profile assumption is
shown to be most critical one for the accuracy of DC power flow [59]. For
DC power flow accuracy, it is shown that a voltage deviation, measured as a
standard deviation of 0.01, is empirically shown to be needed in the Belgian
HV system.

When these above 3 assumptions are applied to non-convex AC active
and reactive power flow equations for pn,m and qn,m, then they reduce to the
following DC power flow equations:

pn,m = −Bn,m.(θn − θm),∀ < n, m >∈ L (2-15)

2.1.3
Other Linear and Quadratic Programming approximations for AC Optimal
Power Flow

Linearisation approaches for power flow equations are typically based on
first and second order Taylor series expansion of state variables, namely, voltage
and phase angle. Examples of one-step approaches based on this expansion are
[60, 61, 62]. Respectively in these references, Taylor series expansion of the
state variables in different spaces, a generalized function of these variables or
tight convex approximations of line flow constraints are proposed. There are
also sequential linear programming (SLP) models are proposed, which enhance
the relaxations or approximations sequentially per iteration. Notable sequential
approaches in the literature are current voltage (I-V) formulation-based OPF
[51], using penalty function and the respective slack variables, second-order
cone programming relaxation which is tightened dynamically via linear cuts
as a sequence of hyperplanes [63] or forming trust regions around the calculated
set points [64]. A recent paper, [65] for instance, extends [60] into a sequential
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algorithm, and tightens critical constraints per iteration.
A linear-programming approximation for power flow is presented in [41]

incorporating reactive power and voltage. This model is based on a polyhedral
relaxation of the cosine terms in the AC equations and Taylor series expansion
of the other non-linear terms.

2.1.3.1
Linearised DistFlow approximation

Linearised DistFlow approximation is a widely applied because of its
computational advantages as a linear programming problem. The DistFlow
equations are exact for radial distribution systems. Linearised DistFlow as-
sumes that the active and reactive power losses are much smaller compared
to active and reactive power flows in a given branch, i.e., Rn,m.ln,m << pn,m

and Xn,m.ln,m << qn,m. Therefore, these losses are ignored in the formulation,
which results in:

pn,m = −pm +
∑

k:n→k

pn,k,∀ < n, m >∈ L; (2-16)

qn,m = −qm +
∑

k:n→k

qn,k,∀ < n, m >∈ L; (2-17)

|Vm|2 = |Vn|2 − 2.(Rn,m.pn,m + Xn,m.qn,m),

∀ (n, m) ∈ L; (2-18)

2.1.4
Second-order cone programming relaxation

The first SOCP formulation for OPF problems was derived by [66] and
it was applied on a radial distribution network.

The canonical form of a second-order cone programming can be written
as [67]:

min
x

cT .x; (2-19)

subject to:

∥ Ei.x + bi ∥2
2≤ gT

i + di, ∀i = 1, ..., r; (2-20)

A.x = b; (2-21)

x ≥ 0; (2-22)
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Rotated SOCP constraints are also used in the context of power flow
formulations, which can equivalently represent canonical SOCP constraints.
These rotated SOCP constraints are defined as

x.y ≥∥ z ∥2
2; (2-23)

x ≥ 0, y ≥ 0; (2-24)

SOCP relaxation is obtained by applying some changes of variables in
the power flow equations, as the followings:

cn,n = |Vn,t|2, ∀ n ∈ N ; (2-25)

cn,m = |Vm|.|Vn|.Cos(θn − θm) = vn.vm + vqn.vqm,

∀ m ∈ Nn, n ∈ N ; (2-26)

sn,m = |Vm|.|Vn|.Sin(θn − θm) = −vn.vqm + vm.vqn,

∀ m ∈ Nn, n ∈ N , ; (2-27)

|Vn| =
√

v2
n + (vq)2

n > 0, as well as |Vn|2 = Vn.V n.

pn =
∑

m∈Nn

pn,m, ∀ n ∈ N ; (2-28)

qn =
∑

m∈Nn

qn,m, ∀ n ∈ N ; (2-29)

pn,m = Gn,m.cn,n −Gn,m.cn,m +

−Bn,m.sn,m, ∀ m ∈ Nn, n ∈ N ; (2-30)

qn,m = −Bn,m.cn,n + Bn,m.cn,m +

−Gn,m.sn,m, ∀ m ∈ Nn, n ∈ N ; (2-31)

cn,m = cm,n, ∀ n ∈ N ,∀ m ∈ Nn; (2-32)

sn,m = −sm,n, ∀ n ∈ N ,∀ m ∈ Nn; (2-33)

c2
n,m + s2

n,m = cn,n.cm,m, ∀ n ∈ N ,∀ m ∈ Nn; (2-34)

The above is an exact analytic formulation for radial networks. Non-convexity
arises because of (2-34). SOCP relaxation is obtained as a rotated cone
formulation:

c2
n,m + s2

n,m ≤ cn,m.cm,m,∀ n ∈ N ,∀ m ∈ Nn; (2-35)
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It is shown that SOCP relaxation is tight for radial (tree) networks under vari-
ous voltage and load conditions [39]. Under high-loading conditions relaxations
and approximations, such as the SOCP relaxation, tend to be inexact [14].

Sufficient conditions for the exactness of SOCP relaxation, e.g. based
on [66], is well-studied. These sufficient conditions are also valid for tighter
relaxations than SOCP, e.g., semi-definite type relaxations scaled diagonally-
dominant sum-of-squares (SDSOS), Shor relaxation, quadratic constrained
(QC) relaxation, moment relaxation, and ’strong SOCP’ relaxation. Below
sufficiency conditions only apply to problems where balanced single-phase
equivalent network models are used.

i) As in [68], SDP relaxation, as a dual of a convex relaxation for the
OPF problem. Whenever the duality gap is zero, a global optimum solution
of the convex dual problem can be derived. Relaxation is shown in [68] to
be tight for the networks where the resistance is very low, 10−5 per unit for
each transformer, and with no reactive loads where demand can be over met
provided that dual is a positive number. Zero duality gap can be satisfied
under certain conditions, tested on some benchmark systems. These imply
that under normal operating conditions SDP relaxation could be tight. [69]
provides a counterexample, however, showing that the approach in [68] can
lead to physically meaningless solutions with non-zero duality gap.

ii) For meshed networks [70] shows that allowing for oversatisfaction
of load where adequate number of virtual phase-shifters are available in the
system, or other non-trivial technical assumptions SDP relaxation is exact.

iii) [71] show for radial networks that when no lower bounds are enforced
on active and reactive power generation limits at any bus, while voltage,
line losses and line flows are considered. [72] and [73] findings support this
conclusion when line limits constraints are not enforced.

iv) [74] show that for radial networks if voltage magnitudes are fixed and
real power lower bounds enforced, but not the reactive power lower bounds,
angle is limited by practical bounds, then the convex relaxations become tight.

Furthermore, some approaches are proposed in the literature to increase
the tightness of SOCP, which is in general not guaranteed to be tight. An
example is the sequential tightness algorithm [58]. This tightness algorithm
iteratively shrinks the upper bounds for power loss constraints which violate
tightness criteria set. Interior point method is used to solve proposed SOCP
model in polynomial time.

For radial networks, [19] shows that in the presence of generation lower
bounds for active and reactive power under which conditions SOCP relaxation
would be i) exact, ii) inexact or iii) feasible though the original non-convex
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OPF is infeasible.
SOCP, in general, demonstrates computational advantages compared to,

e.g., SDP. Mixed-integer SOCP, which can be for instance the case for UC
problems, solvers are rather recent and not so mature compared to MILP
solvers [13].

2.1.5
Semi-definite programming relaxation

SDPs are generalised forms for SOCP as well as linear programming
problems. Unlike linear programming and SOCP in which the decision variables
are represented by vectors, SDP decision variables are symmetric matrices,
name X. Given X ⪰ 0 representing its positive semi-definite property of the
decision matrix X, i.e., non-negativity of all diagonal entries. Semi-definite
programming in its canonical form is given by [67, 13]:

min
X

tr(C.X); (2-36)

subject to:

tr(Ai.X) = bi,∀i = 1, ..., r; (2-37)

X ⪰ 0; (2-38)

where tr(.) is the trace operator, Ai and C are square and symmetric matrices,
and bi are scalars. Trace operator, defined as tr(A.B) = ∑

i

∑
k Ai,k.Bk,i, makes

the constraint (2-37) linear in variable X.
Due to the fact that SDP solvers are not yet mature [13], which is also

the case for SOCP compared to LP, the preference in model formulations is
also the reverse order of this, i.e., first LP, SOCP and finally SDP.

The work [68] is amongst the earliest works popularising usage of SDP
for OPF problems.

SDP can be formulated both in real or complex variables. Complex
variables arise due to phasor representation of voltages in the power flow
equations. Some formulations use the property of Hermitian matrices, whose
eigen values are real-values, which makes the positive semi-definiteness aspect
well-defined.

SDP relaxation to OPF is solvable in general in polynomial time [19].
This result is generalised in [70] with not only quadratic cost functions but
also arbitrary convex cost functions.

In case of exactness conditions are satisfied for SDP relaxation, a global
optimal solution to the OPF problem can be obtained. Efficient algorithms
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to solve SDP relaxation, however, are still to be found [58], and they tend
to be prohibitively computationally expensive when the network size becomes
larger [19]. This feature motivates usage of SOCP-based techniques in practice,
though they are in general weaker than SDP, recognising that SDP is a powerful
method. Both SDP and SOCP yield the same lower bound for the OPF problem
applied to radial networks even if the relaxation is inexact, i.e., exactness
conditions are not satisfied.

It is shown that for radial networks, the SOCP relaxation is equivalent
to SDP relaxation [75].

SDP relaxations are exact for a limited number of problems, sometimes
under not realistic network assumptions especially in modern power systems
such as non-responsive demand or when load oversatisfaction is allowed or
when generation lower bounds are ignored. Therefore, if SDP relaxation is
not tight then the obtained solution may sometimes be not meaningful or
practicable. Like any other relaxations, SDP can result in infeasible or inexact
solutions [19].

SDP relaxation for non-convex quadratically constrained quadratic pro-
grams (QCQPs) are first proposed in the seminal work [76], so-called ’Shor
relaxation’. The first paper applied SDP in OPF problem was [77]. Later on
after the work [68], the SDP for OPF problems became more widespread. For
the Shor Relaxation, it is more convenient to express power flow equations in
their ’rectangular voltage coordinates, such that Ṽn = vn + i.vqn. Admittance
matrix expressed here throughout in rectangular coordinates.

This formulation of power flow, namely on the basis of rectangular
admittance as well as voltage coordinates provides the active and reactive
power flow formulations as in (2-39) - (2-43). Note that this formulation has real
and imaginary part of voltage as variables (unlike the rectangular admittance
and polar voltage coordinate formulation provided earlier at the beginning of
the chapter). This results in the following power flow equations:
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pn =
∑

m∈Nn

pn,m, ∀ n ∈ N ; (2-39)

qn =
∑

m∈Nn

qn,m, ∀ n ∈ N ; (2-40)

pn,m = vn.
(

Gn,m.vm −Bn,m.vqm

)
+ vqn.

(
Bn,m.vm + Gn,m.vqm

)
+

+ Gn,m.
(
|Vm|2

)
, ∀ m ∈ Nn, n ∈ N ; (2-41)

qn,m = vn.
(
−Bn,m.vm −Gn,m.vqm

)
+ vqn.

(
Gn,m.vm −Bn,m.vqm

)
+

−Bn,m.
(
|Vm|2

))
, ∀ m ∈ Nn, n ∈ N ; (2-42)

|Vn|2 = v2
n + (vq)2

n, ∀ n ∈ N ; (2-43)

Firstly, power flow equations are formulated in such a way that all non-
convexivity is incorporated into a rank constraint. Thereafter, that constraint
is relaxed, forming an SDP-type relaxation, namely Shor relaxation.

Shor relaxation can be written in real-valued or complex- valued formu-
lations, which are equivalent in the sense that they provide the same objective
value as well as an optimal solution to real formulation based relaxation can
be formed by using the complex-valued formulation based relaxation, or vice
versa. Solely the formulation for the real-valued relaxation is provided here for
expository purposes. Complex-valued formulations can be found in reference
[13]. The latter is constructed on the basis of Hermitian matrices.

Given em the mth standard basis vector in R|N |. For each bus n ∈ N ,
matrices Lp,m, Lq,m, Mm and Nm are formed given as follows, with m standing
for the receiving bus.
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Lp,m = 1
2 .

Re
(

YT .em.eT
m + em.eT

m.Y
)

Im
(

YT .em.eT
m − em.eT

m.Y
)

Im
(

em.eT
m.Y −YT .em.eT

m

)
Re
(

YT .em.eT
m + em.eT

m.Y
)
 ;

(2-44)

Lq,m = −1
2 .

Im
(

YT .em.eT
m + em.eT

m.Y
)

Re
(

em.eT
m.Y −YT .em.eT

m

)
Re
(

YT .em.eT
m − em.eT

m.Y
)

Im
(

YT em.eT
m + em.eT

m.Y
)
 ;

(2-45)

Mm =
em.eT

m 0
0 em.eT

m

 ; (2-46)

Nm =
0 0
0 em.eT

m

 ; (2-47)

Then the power flow formulated on the basis of rectangular admittance
as well as voltage coordinates can be equivalently written as

pn = tr(Lp,m.W), ∀ n ∈ N , m ∈ Nn; (2-48)

qn = tr(Lq,m.W), ∀ n ∈ N , m ∈ Nn; (2-49)

|Vn|2 = tr(Mm.W), ∀ n ∈ N , m ∈ Nn; (2-50)

0 = tr(N1.W); (2-51)

W = x.xT ; (2-52)

where x = [v1...vn; vq1...vqn]T . Equation (2-43) sets the reference angle to 0.
The SDP relaxation, based on Shor relaxation as applied in [68] relaxes

the constraint in relation to rank, i.e., number of linearly independent columns
of the matrix W. For this, (2-45) is replaced by

M ⪰ 0; (2-53)

If the optimal solution W∗ to the SDP-relaxed problem fulfills the
following, then the relaxation is exact and the globally optimal solutions to the
original problem can be obtained from the solution to the relaxed-problem.

rank(W∗) = 1; (2-54)

Shor relaxation is shown to be exact in a number of power system OPF
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applications [68]. However, it is also shown that it can fail to be exact [69].
Exactness of Shor relaxation can be impacted by the objective function chosen
as well as constraints in which, e.g., the way the power flow is formulated.
Since it is demonstrated that there are test power systems for which Shor
relaxations are not exact, though they do not satisfy the so far known sufficient
conditions imply that there can be other sufficient conditions which are not
known, constituting a potential research direction. Various sufficient conditions
are deriven with regard to SOCP, which also apply to SDP. Specific sufficient
conditions can be found in references, such as [78, 79, 80]. Some of these
sufficiency conditions may not be practicable, such as no limits on reactive
power injections or power flows [80].

SDP is a computationally challenging method in general, especially due
to the positive semi-definite constraint (2-53) in the real-valued formulation.
The complex-valued formulation tends to have similar computational chal-
lenges. Several methods focus on graph theoretical concepts, such as utilis-
ing ’chordal sparsity’ of the network to reduce computational burden. These
methods may suffer from numerical ill-conditioning. Such techniques as ’facial
reduction’ are applied to improve this aspect [81].

Other than Shor relaxation, especially for the cases it is inexact, Lasserre
hierarchy applied to real-valued polynomial optimisation problems and related
moment, or sum-of-squares relaxation hierarchies are proposed [82, 83]. Fur-
thermore, moment relaxation hierarchy in complex numbers are also proposed,
computationally superior to Lasserre hierarchy due to smaller matrices used,
but at the cost that in general such relaxations are less tight than Lasserre.
However, it is worthwhile to highlight that SDP solvers with complex numbers
are even less mature than those solvers SDP applied to real-valued problems.
As a trade-off to accuracy and computational burden, some further relaxations
to Lasserre hierarchy are proposed, such as SDP/ SOCP hieararchy [84]. The
latter is based on the idea that SOCP constraints necessary but not sufficient
conditions for SDP constraints obtained from higher order moment relaxations.
The proposed mixed SOCP/SDP model makes use first-order relaxation by
making use of SDP constraints and higher-order relaxation of the SOCP con-
straints. Another type of relaxation to Lasserre hierarchy is named as Scaled
Diagonally Dominant Sum-of-Squares (SDSOS) [85]. This method is based
on polynomial optimisation through which hierarchy of SOCP relaxations are
provided.

Off-the-shelf SDP solvers, such as MOSEK, typically apply interior point
methods based on second-order derivatives and provide local optimal solutions.
Along with interior point algorithm other methods, such as coordinate-descent,
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ADMM are also applied. Enhancements to model formulations as well as other
computational advances are still welcome for solving SDP-type problems.

2.2
Outer approximation

This section presents a general form of outer approximation-based algo-
rithms.

Optimisation problems, in which the objective and constraints are repre-
sented by linear and non-linear functions of both continuous and integer vari-
ables, are named as mixed-integer non-linear programming problems (MINLP)
[86]. There is a large variety of optimisation problems which can be represented
by a MINLP. A specific class of MINLP are named as "convex MINLP" to de-
scribe problems which are convex when the integer variables are relaxed into
continuous. Despite this naming, any optimisation problem with a discrete
feasible space is by definition non-convex.

"Convex MINLP" are an important class in which convexity property,
when relaxed, can be used and decomposition algorithms can be applied.
Amongst the decomposition algorithms for MINLP, outer approximation (OA)
and its variants, such as single-tree OA [87], quadratic cuts OA [88], conic-
based OA [89], are widely applied.

Most successful algorithms to solve "Convex Mixed Integer Nonlinear
Programming" problems are based on linear approximation [55, 86]. OA is one
of the most efficient methods, and several solvers apply this method. One of
the shortcomings is that there can be instabilities and some jumps can be
experienced in the search space. Some regularisation methods are proposed in
the literature to tackle this issue [90].

The principal idea is to approximate non-linear functions by valid linear
functions of nonlinear constraints using gradients. These linearisations are
identical to the first-order Taylor series expansions of the non-linear functions
in the constraints. Because of the convexity of the approximated function, this
linearisation results in a relaxation for the original problem. It is due to the
fact that the polyhedral set constructed by these linear approximation is larger
than the original feasibility set of the non-convex constraints.

Outer approximation (OA) algorithm is first proposed by [91], and later
enhanced by [92]. It is a highly popular approach to solve mixed integer non-
linear problems due to its interpretability and straightforward implementation
and convergence guarantees in a finite number of iterations [55]. As the number
of integer solutions is assumed to be finite, it requires relatively few number
of iterations and hence leads to fast convergence.
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OA attemps to construct an upper bound for the original mixed integer
non-linear problem by fixing the integer variable. It differentiates whether the
solution to the problem by fixing the integer variable is feasible or not. Gap
between the best upper and lower bounds are used as a stopping criteria. As
in [92], assuming that KKT conditions are satisfied when the integer variables
are fixed at obtained optimal values, a solution for the integer variable is not
considered for a second time by the algorithm unless that solution is part of
the optimal solution set. In the latter case, it would be visited for the second
time at maximum. This implies that the OA needs relatively few number of
iterations for convergence.

MINLPs can be abstracted as follows:

minx,y f(x, y); (2-55)

subject to:

gj(x, y) ≤ 0,∀j = 1, ..., l; (2-56)

A.x + B.y ≤ b, ∀x ∈ Rn, y ∈ Zm; (2-57)

The objective function can be transformed into an epigraph form as a
constraint such that, f(x, y) ≤ µ. and µ stands for the objective value.

For global convergence reasons typically convexity and continuous differ-
entiability of the functions f, g1, ..., gl : Rn × Rm → R, bounded search space
(e.g., polyhedron) for the linear constraints, and constraint qualification for
each feasible integer combination, e.g., Slater’s condition are assumed to hold
[86]. Albeit these, OA can also be applied in non-convex functions [93].

As outlined in [86] in detail, OA proceeds firstly by an initialisation by
a set of trial solutions, {xi, yi}k

i=0, linear relaxation can be obtained by the
constraints

f(xi, yi) + ∆f(xi, yi)⊤.

x− xi

y− yi

 ≤ µ,∀i = 1, ..., k; (2-58)

g(xj, yi) + ∆gj(xi, yi)⊤.

x− xi

y− yi

 ≤ 0,∀i = 1, ..., k,∀j ∈ Ii; (2-59)

where Ii are index sets consisting of active non-linear constraints when the
trial solution (xi, yi) applied. The above constraints given by (2-58)–(2-59)
represent a polyhedral and they are an outer approximation to the non-linear
constraints. The linear constraints generated in order to approximate the non-
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convex feasible space is called ’cuts’. It is because they cut off the search space
by eliminating the parts which are found to be infeasible.

The consecutive integer solution candidates, yk+1, are derived by solving:

minx,y,µ
µ; (2-60)

subject to:

f(xi, yi) + ∆f(xi, yi)⊤.

x− xi

y− yi

 ≤ µ,∀i = 1, ..., k; (2-61)

g(xj, yi) + ∆gj(xi, yi)⊤.

x− xi

y− yi

 ≤ 0,∀i = 1, ..., k,∀j ∈ Ii; (2-62)

A.x ≤ b; (2-63)

x ∈ Rn, y ∈ Zm, µ ∈ R; (2-64)

Since convexity is assumed in the problem, the optimal solution obtained
from the problem (2-60) – (2-64) gives a valid lower bound for the original
MINLP problem. Define LBk+1 is a lower bound.

In order to derive valid upper bounds to the original MINLP problem, two
situations are considered. Firstly, if the integer yk+1 is feasible, the continuous
variable xk+1 can be obtained through the solution to the convex NLP problem

min
x∈Rn

f(x, yk+1); (2-65)

subject to:

gj(x, yk+1) ≤ 0,∀j = 1, ..., l; (2-66)

A.x + B.yk+1 ≤ b; (2-67)

A feasible solution to the problem given by (2-65) – (2-67) provides an
upper bound to the original MINLP problem, UBk+1.

In case this latter optimisation problem is infeasible, a feasibility problem
which is outlined herebelow, needs to be solved to obtain xk+1. The feasibility
problem is a minimisation problem on the norm of the constraint violations,
usually linf or l1. By fixing at the optimal integer values for y, the feasibility
problem can be solved over the variables x and s such that
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min
x∈Rn,s∈Rl

+

∥ s ∥p; (2-68)

subject to:

gj(x, yk+1) ≤ sj, ∀j = 1, ..., l; (2-69)

A.x + B.yk+1 ≤ b; (2-70)

The OA algorithm proceeds in such a way that at each iteration a new
MILP optimisation problem is solved having an additional cut compared to
the previous iteration. To increase the efficiency of this process for searching
integer variable candidate and not to solve too many similar problems, some
works such as [87], incorporate other procedures into the OA - e.g., branch-
and-bound.

Pseudo code of the OA algorithm is provided below:
Algorithm 1 Outline of Outer Approximation Algorithm

1. Initialisation:

1.1 Solve a continuous relaxation of the MINLP problem, store optimal
solutions x, y;

1.2 Cut generation at the points x, y using (2-58)–(2-59), construct
master OA-MILP problem (2-60)–(2-64);

1.3 Set iteration counter ν ← 1, set UB0 ←∞, set LB0 ← −∞;

2. Convergence check, repeat until UBν−1 − LBν−1 ≤ ϵ tolerance level:

2.1 Solve OA-MILP (2-60)–(2-64), get yν , LBν ;
2.2 Solve NLP-I (2-65)–(2-67) with integer variables y fixed at yν , get

xν ;

2.2.1 If problem NLP-I (2-65)–(2-67) feasible, UBν =
min{f((xν , yν), UBν−1};

2.2.2 If problem NLP-I infeasible, solve feasibility problem NLP-f
given by (2-68)–(2-70), get xν , set UBν ← UBν−1 ;

2.3 Generate cuts at the points xν , yν using (2-58)–(2-59), add to
master OA-MILP problem (2-60)–(2-64);

2.4 Set iteration counter ν ← ν + 1;

3. Return best found solutions given tolerance level.
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2.3
Distributed, decentralised computation of Optimal Power Flow

Smart electric power systems’ physical structure is increasingly dis-
tributed. Various entities, such as distribution and transmission system op-
erators and market actors, interact in this system as well as take responsibility
in a certain part of the system. Since these systems are physically intercon-
nected, control decisions of one entity would impact the other. These entities
need to coordinate for efficiency and effectiveness of control in order to assure
system reliability. Hence, centralised control and energy management algo-
rithms may not be adequate for operation and control purposes [23]. Since a
centralised problem, where an agent knows all variables and constraints for
transmission and distribution networks, is not realistic. Accordingly, the DSO-
TSO coordination related contribution focuses on decentralised or distributed
computing.

As previously discussed, optimal power flow and unit commitment func-
tion as energy management algorithms. Despite various solution techniques are
proposed to solve such problems centrally as a problem of one single control-
ling entity, distributed and decentralised techniques are also extensively stud-
ied. The paper [23] provides a thorough outline of these techniques. Within
the latter context, the OPF problem is usually studied from the perspective of
how one controlling entity would coordinate with the neighbouring entity so
that reliable operations can be assured for the entire system.

Distributed and decentralised techniques differ from each other in terms
of whether a central coordinator is needed or not, as defined in [23]. Dis-
tributed optimisation requires a coordinator which coordinates different in-
dependent entities. Entities themselves do not communicate with each other.
One can talk about two different hierarchy level, one with controlling entities,
and the other with the coordinator. Hence, in distributed OPF algorithms,
communication network, is different from the electric network topology itself.
Decentralised techniques, on the other hand, do not have a coordinator. Each
entity exchanges information with the next entity. In decentralised algorithms,
there is no hierarchy involved, and all entities have independent and same
hierarchy level. Despite the fact that in these algorithms, often the network
topology and communication network would be the same, it is not necessarily
always the case.

There are six widely applied decentralised or distributed optimisation
algorithms to OPF type of problems: analytical target cascading (ATC)
[94], alternating direction method of multipliers (ADMM), proximal message
passing (PMP) [95], auxiliary problem principle (APP), optimality condition
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decomposition (OCD) [96], and consensus and innovations (CI) [97]. ATC and
ADMM are distributed algorithms with a coordinator, whereas the remaining
are decentralised algorithms.

This thesis applies an ADMM-type of algorithm, and proposes a decen-
tralised structure in order to mitigate the need for a central controller, being
a limitation of distributed algorithms. The choice of ADMM as a method in
the respective contribution of the thesis is because of the fact that it allows
computation of equilibrium set points of the agents with a limited information
interchange and without any hierarchy amongst the agents. Other methods
to compute equilibrium set points, such as Nash equilibrium, may require a
central agent.

A general version of the ADMM is described in the next subsection.
Other than these classifications in terms of distributed and decentralised

nature of algorithms, there is another classification in terms of offline and
online algorithms [13]. Offline algorithms are distributed algorithms in which
iterations continue on all variables in the cyber environment until a convergence
is achieved. Interim iterations may not necessarily comply with Kirchhoff’s laws
or operating constraints.

Real-time or online algorithms, on the other hand, provide advantages
for real large-scale power systems involving dynamic DERs. In these models,
the iterations are performed solely on variables of controllable devices as a
feedback to the network. A set of algebraic equations or differential equations
are applied to the power flow problem and optimisation model is with the
objective to control. These models can capture changing network topology
and conditions. Some of such algorithms are to a certain degree decentralised
and model-free, i.e., not depending on system parameters but rather on the
measurement data from smart devices.

2.3.1
Alternating directional method of multipliers

Other than the earlier described physical structure of smart grids, namely
the entities being responsible for their own part while interconnected with
each other, there are time limitations for system operators to take operational
decisions, such as for energy management or market clearance purposes etc.
These factors motivate consideration of a decomposition mechanism which can
facilitate finding a solution within the tolerated error limits.

In distributed optimisation, in general, how to perform a decomposition
and respective update procedure is of importance to gain algorithmic efficien-
cies [98]. One of the common distributed approaches is the Dual Decomposition
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with dual sub-gradient ascent method enabling distributed computation, which
is reported to be slow. Method of Multipliers is an alternative approach, which
is characterised to be robust and with favourable convergence properties. The
Alternating Direction Method of Multipliers (ADMM) provides a trade-off be-
tween these two approaches [13]. ADMM and its variants are reviewed by a
recent survey [99].

Similar to the Dual Decomposition, the ADMM is based on the minimi-
sation of the Lagrangian function, - performed on its augmented form -, and
update of dual variables. The Dual Decomposition method minimises the La-
grangian function with regard to the primal variables jointly. In the ADMM,
the primal variable updates are performed in an alternating or sequential man-
ner. First, augmented Lagrangian function is formed. Then, it is decomposed
and minimised over sequential Gauss-Seidel iterations.

ADMM is applied in OPF and UC type of problems, particularly for
large-scale power systems [100]. ADMM performs a decomposition and coordi-
nation process in which a large problem is divided into sub-problems in which
the solution process is coordinated, and overall it provides the solution of the
original large scale-problem [101], in case convergence is achieved, which is not
always for granted.

Even though in its standard form ADMM requires a coordinator, and
as such it is a distributed algorithm, there are works in the literature which
attempts to remove this coordinator need and apply a decentralised algorithm.
Examples to this are works by [101] and [102]. In addition, there are some de-
centralised techniques proposed combining ADMM with some convexification
procedures such as in [103].

Given a general problem with two-blocks, i.e., a problem ultimately
separable into two optimisation problems when necessary modifications are
made, a compact form is formulated as follows:

min
x,y

(
f(x) + g(y)

)
(2-71)

subject to:

C.x + D.y − b = 0 : π (2-72)

x, y ⪰ 0 (2-73)

where C, D are matrices, x, y, b, and π are vectors. the Lagrangian function
is constructed as follows:

Lρ(x, y, π) =
(
f(x) + g(y

)
+ πT .(C.x + D.y − b) + ρ

2 . ∥ C.x−D.y − b ∥22
)
;

(2-74)
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where ρ > 0 is a penalty parameter controlling the violation of feasibility of the
relaxed linking constraints as well as the step size for the Lagrangian multiplier
update problem. The choice of ρ is a research area, and its varying update per
iteration ν may improve the convergence of the decomposed problem [100,
104], though case-dependent. Under mild conditions, it is demonstrated that
the ADMM converges for all values of ρ > 0 [105] for convex problems. The
ADMM iterates between the variable updates of the problem, corresponding
to the elements of the vectors x and y using Gauss-Seidel, and the updates of
the dual of the relaxed constraints given by the vector π [23].

Primal-variable update is performed by:

xν+1 = argminxLρ(x, yν , πν); (2-75)

yν+1 = argminyLρ(xν , y, πν); (2-76)

Dual-variable update is performed by:

πν+1 := πν + ρ.(C.xν+1 + D.yν+1 − b); (2-77)

The consensus ADMM algorithm stops when the primal and dual residuals in
each sub-problem is sufficiently small with an error tolerance level of ϵ:

∥ sν+1 ∥2
2=∥ ρ.

(
C.xν+1 + D.yν+1 − b

)
∥2

2≤ ϵ; (2-78)

∥ rν+1 ∥2
2=∥ πν+1 − πν ∥2

2≤ ϵ; (2-79)

Note that x- and y-update above can be done in a decentralised way,
since they are independent of each other. Dual variable, π, -update, however,
requires a centralised coordination. A central coordinator collects all shared
variables from all sub-problems, the coordinator calculates the dual variables
(multipliers) and sends them back to the sub-problems which needs to be
updated. Furthermore, since letting in the algorithm xν instead of xν+1, makes
parallel computing possible. The procedure is iteratively repeated until a
convergence is found under a set tolerance level.

Noted, in general, is that if the objective function is convex and sat-
isfying other properties as described in [100], the residual under the equality
constraint, which is relaxed and augmented into the objective function, is guar-
anteed to converge to zero, and objective values of the iterates approach the
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original problem’s optimal value.
ADMM can also be used for non-convex problems. However, the conver-

gence of the algorithm may not be guaranteed, though it is reported to behave
well in some problems, though case-specific. Various works attempt to improve
convergence of mixed-integer problems, e.g., by introducing tight bounds on
the problem.

2.3.1.1
Consensus ADMM

In two- or multi-block optimisation problems in general the agents may
have shared decision variables on the value of which they need to reach to a
consensus albeit having own objectives. This problem can be formulated as
[99]:

min
x

∑
i∈I

(
fi(x)

)
(2-80)

subject to:

C.x− b = 0 (2-81)

x ⪰ 0 (2-82)

where fi : Rn → R is a function representing the individual objectives of each
agent i, x ∈ Rn is the vector of shared decision variables between the agents.
This problem can be reformulated as:

min
x

∑
i∈I

(
fi(xi)

)
(2-83)

subject to:

C.xi − b = 0, (2-84)

xi = z : πi (2-85)

xi, z ⪰ 0 (2-86)

where xi ∈ Rn is the local decision copy held by agent i and z ∈ Rn is the global
decision variable or consensus variable which ensures consistency of decision
copies of individual agents. This consensus variable z requires to be managed
by a central coordinator. Accordingly, the Lagrangian function is constructed
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as follows:

Lρ(xi, z, πi) =
∑
i∈I

(
fi(xi) + πT

i .(xi − z) + ρ

2 . ∥ xi − z ∥22
)
; (2-87)

By using the property that the z − update problem becomes an un-
constrained optimisation problem, its analytic equivalent can be constructed.
This would allow a simplified and convenient choice of zν at each iteration as
zν = xν , where xν = 1

|I| .
∑

i xν
i .

Accordingly, at each iteration ν, primal variable update is performed by:

xν+1
i = argminxi

(
fi(xi) + πT

i .xi + ρ

2 . ∥ xi − xν+1 ∥2
2

)
,∀i; (2-88)

Dual update is performed by:

πν+1
i := πν

i + ρ.(xν+1
i − xν+1),∀i; (2-89)

The consensus ADMM algorithm stops when the primal and dual residuals in
each sub-problem i is sufficiently small with an error tolerance level of ϵ:

∥ sν+1 ∥2
2= ρ. ∥ zν+1 − zν ∥2

2≤ ϵ; (2-90)

∥ rν+1
i ∥2

2=∥ πν+1
i − πν

i ∥2
2≤ ϵ,∀i; (2-91)

2.4
Stochastic optimisation

Lack of perfect information or unknown data is common is power system
or any real-life problems. For instance, in day-ahead electricity scheduling
the system operators will not perfectly know how much wind power would
be generated the next day as it depends on wind speed. Since the decisions
still need to be made throughout a decision horizon under the uncertainty of
the realisation of the parameters, this triggers the application of stochastic
optimisation. These uncertain parameters are modeled as a random variable.
Random variables follow a stochastic process, which is defined as the process
according to which the value of the random variable evolves. In a stochastic
process, a set of dependent random variables are sequentially organised in time.

In stochastic optimisation inputs are represented by probability functions
[106]. There are various ways how the decision-making can be formulated, e.g.,
by the expected values of the uncertain data represented by their probability
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functions. Computationally, it is practical to represent stochastic processes
through scenarios. Each scenario is a standalone occurrence of a stochastic
process. Since input data is a collection of different sets of random variables,
the objective function of the optimisation is also a random variable.

Stochastic optimisation increases the size, and hence, the computational
aspects of the problem considerably. A large number of scenarios might
be needed to sufficiently represent the plausible uncertainty of the random
variables. This may lead to intractability of the problem.

Over the decision horizon, a number of stages is defined, representing
a point in time the decisions are taken or where uncertainty is revealed.
Therefore, information available to the decision-maker changes per stage. A
stochastic optimisation can be two or multi-stage. In this thesis, a two-stage
stochastic programming is considered.

2.4.1
Two-stage stochastic optimisation

Two-stage stochastic optimisation is defined as an optimisation problem
where the decisions are taken in two stages. Define a stochastic process λ

represented by a set of scenarios λS , and two decision variable vectors are given
by x and y. Let x be the variable for which the decision is first made. This
is called the first-stage or here-and-now decisions [106, 107]. These decisions
are taken before the revelation of the stochastic process λ(s). The variable y is
decided after the decision x is made and the stochastic process λ(s) represented
by a set of scenarios s has materialised. Therefore, the vector y are the second-
stage or wait-and-see decisions, and they depend on the variable x and scenario
s. The vector y can be represented as y(x, s). This decision process can be
described as a decision tree with a set of nodes and branches. Nodes stand
for states of the problem where decisions are taken at any given time. The
node where the first stage decision is made is called the root node, where the
planning horizon starts. Second-stage nodes are connected to the root node via
so-called branches, which show different realisations of random variables. The
final nodes in the scenario tree are called leaves. In the case of second-stage
stochastic programming, second-stage decisions are the leaves of the tree.

Two-stage stochastic programming can be written as a stochastic linear
programming problem in the following form:
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min
x

z = cT .x + Eλ[Q(x, λ̃)]; (2-92)

subject to:

A.x = b; (2-93)

x ∈ X ; (2-94)

where:

Q(x, λs) = miny

q(s)T .y(s)}; (2-95)

subject to:

T(s).x + W(s).y(s) = h(s); (2-96)

y(s) ∈ Y

,∀s ∈ S; (2-97)

where x and y(s) are vectors representing the first- and second- stage decision
vectors, whereas c, q(s), b, h(s), A, T(s) and W(s) are matrices and vectors
of parameters of suitable size. The nested problem given by (2-95) – (2-97) is
named as recourse problem.

Let ϕs be probability assigned to each scenario within a scenario set S.
Two-stage stochastic programming can be re-written in the following more
compact form, so-called deterministic equivalent problem:

min
x,y(s)

z = cT .x +
∑
s∈S

ϕs.
(

q(s)⊤.y(s)
)

; (2-98)

subject to:

A.x = b; (2-99)

T(s).x + W(s).y(s) = h(s),∀s ∈ S; (2-100)

x ∈ X , y(s) ∈ Y ,∀s ∈ S; (2-101)

2.5
Bi-linear optimisation

Bi-linear optimisation problems arise when two decision variables,
whether integer or continuous, multiply each other. This makes the optimisa-
tion problem non-convex, and hence, off-the-shelf linear programming solvers
cannot be readily used. Although some modern solvers, such as Gurobi, can
handle such problems their efficiency remain to be further tested. Continuous
and mixed integer bi-linear programming problems are encountered in various
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applications in engineering, and this problem is moderately well-studied in the
optimisation literature [108]. A solution approach which is extensively applied
is by constructing polyhedral relaxations using envelopes of each bi-linear term
within a branch-and-bound framework [109, 110].

Optimisation problems with bi-linear terms can be in the objective
functions or constraints. This thesis focuses on problems where the bi-linear
terms are in the constraints and they are continuous.

Two widely used methods, namely McCormick Envelopes and binary
expansion are outlined next.

2.5.1
McCormick envelopes

A standard way of solving bi-linear optimisation problems is by replacing
such terms by their concave and convex envelopes, so-called McCormick en-
velopes [111]. McCormick envelopes is a relaxation technique for bi-linear non-
convex nonlinear problems. The principal assumption is the fact that convex
and concave envelopes can be constructed for a non-convex function which is to
be optimised. The concave envelope (and convex envelope respectively) is the
concave over-estimator (convex under-estimator) for the non-convex function
which constructs the tightest feasible space to the function. Non-unique con-
cave over-estimators and convex under-estimators may exist. However, there
exists a unique concave envelope and a convex envelope for the non-convex
objective function in question, which is the main idea of the McCormick en-
velopes.

For bounded continuous variables, x and y respectively, and a bi-linear
variable w, such that w = x.y, define a bi-linear set P consisting of two over-
estimators and two under-estimators for w. Formulation follows [108].

P =: {(x, y, w) ∈ R× R× R : w = x.y, x ≤ x ≤ x, y ≤ y ≤ y} (2-102)

Applying McCormick envelopes provides the set M as follows:

M =: {(x, y, w) ∈ R× R× R : w ≥ 0,

w ≤ x.y, w ≤ y.x, w ≥ y.x + x.y − x.y,

w ≥ y.x + x.y − x.y, w ≤ y.x + x.y − x.y, w ≤ y.x + x.y − x.y, } (2-103)

McCormick envelopes are computationally straightforward to implement.
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McCormick technique-based relaxation tends to be stronger than various
convexification and linearisation techniques [112]. These features brings about
their wide-spread applicability for bi-linear optimisation problems.

For the general case, McCormick envelops are the best possible linear
cuts within the (x, y, w) space. The quality of McCormick-based relaxation,
however, depends on the distance of x and y from their bounds [113, 114].
Pre-processing of variables or branching-based techniques are applied in the
literature for a reduced domain for x and y aimed to obtain a tighter relaxation.
Various global optimisation solvers apply variable bounding to diminish the
search space of the relaxed problem under McCormick. Piecewise McCormick
relaxation is proposed [114], which splits one of the bi-linear variables’ domain
into a number of partitions while keeping the global bounds of the other
variable. Interval arithmetic, reduced cost and optimisation-based approaches
are applied for bound tightening purposes. A global optimisation based bound
tightening algorithm is proposed by [115], unlike some earlier works, without
introducing new integer variables.

Other than these, some approaches in the literature blend different
methods, such as McCormick envelops and unary expansion, as in [34] in order
to combine advantages of the methods.

2.5.2
Binary expansion

Another way of linearisation of bi-linear terms is binary (or unary)
expansion.

Binary expansion of the continuous variable y proceeds as follows. Let
y ∈ [y, y].

Define binary expansion step size as ∆y = (y − y)/M1, where M1 is
a large integer. For the binary expansion, let M1 = 2K1, where K1 > 0.
Unary expansion can be obtained by applying a logarithm base of 10 in the
formulation.

Furthermore, let the set K = {0, 1, ..., K1} and y = y + ∆y.
∑

l∈K 2l.z1
l ,

where z1
l ∈ {0, 1}. Define w1

l ∈ R such that v1
l = z1

l .x. vl is used to model the
product x.zl. The following set can be obtained:

B =: {(x, y, w, z, v) ∈ R× R× R× {0, 1}K1+1 × RK1+1 :

y = x.y + ∆y.
∑
l∈K

2l.v1
l }; (2-104)

The precision of binary expansion depends on the step size for the binary
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expended term chosen [116]. A small step size implies a higher precision
whereas with a higher computational burden due to larger number of binaries
increasing the searching space of the optimisation problem.

2.6
Risk measures and control

In stochastic optimisation, an uncertain parameter is modelled as a
stochastic process, and hence the objective function which typically minimises
costs is a random variable based on an assumed probability distribution.
Optimisation is performed over a function specifying the distribution of this
random variable, which is commonly based on its expected value. The main
cons of this representation is the fact that it ignores other features, such as the
tail risks of the distribution [106]. Hence, there exists a probability that the tail
risk occurs, leaving the decision-maker with potentially substantial amounts
of costs which may not be captured by the expected value representation.
The latter is named as ’risk-neutral decision-making’. Risk measures are
applied in the literature in order to control risk, which is coined as ’risk-
averse decision-making’. Common metrics of risk are i) variance; ii) shortfall
probability; iii) expected shorfall; iv) value-at-risk (VaR); v) conditional value-
at-risk (CVaR). Variance is an intuitive and well-known metric, proposed by
[117], which measures dispersion of costs, and can be incorporated into a
stochastic optimisation problem. It minimises the probability of deviation from
an expected costs. Its main cons is the fact that it penalises the scenarios at
the higher end of the cost spectrum as well as those lower than expected
cost. Shortfall probability and expected shortfall are linear risk measures
which define risk as the probability of occurrence of cost which is higher
than a benchmark, or the expected value of cost lower than the benchmark,
respectively [118]. The drawback of these methods is the fact that they require
a definition of a target cost value. In addition, they are not so-called ’coherent
risk measures’ [119], which is a desirable property. For a coherent risk measure,
as defined in [119], all of the followings should hold: i) translation invariance;
ii) subadditivity; iii) positive homogeneity; and iv) monotonicity.

Value-at-risk and conditional-value-at-risk, on the other hand, define a
probability, (1 − φ), representing the part of the probability distribution for
which the risk is to be controlled. The VaR is the value corresponding to the
(1 − φ)-quantile of the probability distribution for the loss function. CVaR
corresponds to the expected value at the tail, beyond the (1− φ)-quantile.

Other than these, stochastic dominance constraints can be incorporated
into the stochastic optimisation formulation in order to control risk. The latter
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approach is based on searching for ’acceptable’ elements within a distribution
of the cost function optimised, rather than a ’best’ element. This approach
facilitates the comparison between two random variables in terms of their
acceptability, which one is better compared to a given benchmark ’acceptable’
to the decision-taker. First- and second-order stochastic dominance constraints
can be incorporated into the decision-making problem. First-order stochastic
dominance constraints are applied by using a set of auxiliary binary variables.
Second-order formulations are based on continuous variables. A principal
shortcoming of stochastic dominance-based approaches is that it can be hard
to specify a benchmark profile which leads to a feasible solution and its
considerably higher computational burden.

Amongst all these risk measures CVaR is the most commonly applied
one in optimisation problems because it is a coherent risk measure, and
can be represented by a linear and continuous formulation, advantageous for
optimisation and computational purposes [106].

2.6.1
Conditional value-at-risk

Given its convenient technical and computational features, in this thesis
the quantile-based risk functional, Conditional Value-at-Risk (CVaR) [120], is
applied to capture the risk aversion in the certainty equivalent optimisation
problem. For a given percentile φ ∈ (0, 1) and probability over scenario s ∈ S

ϕs, CV aR(φ, f(x, λ̃)) - where f is a continuous function given vector x and
random vector λ̃ - is computed as the expected loss in the (1 − φ) worst
scenarios. The CVaR of a discrete distribution is defined as follows, where E
is an expected value function:

CV aR(φ, f(x, λ̃)) = min
{
β + 1

1− φ
.Eλ̃

[(
min(β − f(x, λ̃), 0)]}; (2-105)

CV aR(φ, f(x, λ̃)) can be included into the stochastic risk-averse problem
as follows [106]:



Chapter 2. Methodological Background 67

min
Ξ

(
1− Λ

)
.

cT .x +
∑
s∈S

ϕs.q(s)T .y(s)
+

+ Λ.

β + 1
1− φ

∑
s∈S

ϕs.γ
CV aR
s

; (2-106)

subject to:

A.x = b; (2-107)

T(s).x + W(s).y(s) = h(s),∀s ∈ S; (2-108)

− β +
cT .x + q(s)T .y(s)

 ≤ γCV aR
s (s), ∀s ∈ S; (2-109)

γCV aR
s (s) ≥ 0,∀s ∈ S; (2-110)

x ∈ X , y(s) ∈ Y ,∀s ∈ S; (2-111)

where β is an auxiliary variable and γCV aR
s (s) is a continuous non-negative

variable.



3
Computational Techniques and Model Accuracy in Unit Com-
mitment and AC Optimal Power Flow

This Chapter reuses the publication [Paper A] Martin, N. C., & Fanz-
eres, B. (2023, June). Linearisation Based Decomposition Method for Circle
Approximation in AC Network Constrained Unit Commitment. In 2023 IEEE
Belgrade PowerTech (pp. 1-6). IEEE, which is herewith referenced and cited
as [20].

This contribution is principally motivated from the findings from the lit-
erature presented in Chapter 2 with regard to the need for computationally
robust techniques for optimal power flow computation with enhanced model ac-
curacy to represent physical laws describing these flows. This Chapter proposes
a sequential-linearisation-based approximation method to convexify the non-
convex power flow equations, and present its performance against a second-
order-cone-programming convex relaxation as a benchmark. Convexification
results in solution of the models in polynomial time and a provision of a lower
bound for the optimisation problem [60].

3.1
Background for Mathematical Formulations

In this Chapter, a bus injection type, and voltage-based formulation of
AC OPF is constructed when applicable. Voltage magnitudes at each bus
n ∈ N , are given by Vn, and are represented by a polar form, such that
ei.θn = Cost(θn) + i.Sin(θn), where θn is the phase angle of the respective
bus measured in radians, θn ∈ (−π, π], ∀nN . The notification is simplified
such that instead of |Vn|, the notification Vn is used to represent voltage per
bus. |Vn| is the modulus of the complex voltage Vn = |Vn.ei.θn . Though not
explicitly stated during the Chapter, admittance matrix formulation is on the
basis of rectangular coordinates, such that Y n,m = Gn,m + i.Bn,m. Balanced,
single-phase equivalent model as well as steady-state conditions are assumed
throughout.

3.2
Introduction

Unit Commitment (UC) models are widely used nowadays by utilities
and system operators for minimum cost scheduling of energy and reserves
[121]. This scheduling takes place under the assumption that the operation of
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the power system is with a degree of precision. Various approximations to the
system state are applied in practice, among others, a linear representation of
the network via DC power flow. As these approximations are inexact, the state
of the system in real-time may differ from the estimated state. Furthermore,
DC power flow ignores reactive power scheduling, voltage management and
other AC power flow-related constraints. The latter is increasingly important
in view of the necessity to accommodate a larger share of weather-dependent
generation and increased demand driven by electrification [14]. Additionally,
a deviation between the predicted and the actual state of the system implies
potentially costly corrective and ad hoc interventions by system operators [121].
Alignment of scheduling models with real operations is considered a key issue
in today’s principal power markets, such as the PJM [122].

The main challenges for solving AC network-constrained UC problems
(AC-NCUC) are problem size and non-convexity [121, 14]. In fact, AC-NCUC
problems are combinatorial optimisation problems whose computational com-
plexity increases exponentially with the network size [123]. These problems
entail mixed-integer variables representing on/off status of the generators, and
power flow equations. As such, they are non-convex and non-linear, and, are
classified as NP-hard [124]. Semi-definite programming [125] and second-order
cone programming (SOCP) based relaxations [126, 127] are often applied. How-
ever, modern solvers cannot handle large-scale mixed-integer SOCP problems
efficiently [14, 128]. Furthermore, SOCP results can be less precise with high
system-loading conditions [129], characterised by voltage fluctuations and con-
gestion of thermal limits. This occurs with an increased likelihood in power
systems with a high level of renewable penetration [130].

In order to address the computational challenges, various algorithms
are used in the literature, an outline of which can be found in [131]. Recent
works [123] and [14] apply a Benders’ type decomposition to the AC-NCUC
problem. [123] solves a mixed-integer linear master problem, to which linear
constraints for feasibility are included. These constraints can potentially cut
integer solutions, which is a shortcoming of the approach. A semi-definite
programming relaxation to the rectangular formulation of AC power flow is
applied in the sub-problems. The algorithm in [14] requires a large information
transfer between the two problems, causing in some instances a relatively high
computational burden.

In view of the aforementioned considerations, the objective of this paper
is to propose a linearisation for the circle approximation in AC-NCUC,
which is an extension to the approach in [132] based on [133]. The resulting
problem is a mixed-integer linear programming (MILP), for which the solution
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methods used by state-of-the-art solvers are more mature compared to SOCP
relaxations [128]. Such a linearisation is performed in earlier works on the basis
of a discretisation, which is a priori and decision-dependent. To more efficiently
solve the resulting large-scale MILP, as well as remove the a priori aspect of
discretisation, an algorithm based on an outer approximation is designed. This
algorithm selects the optimal lines from a continuous set at each iteration.
Different than [14], the proposed decomposition needs solely an exchange of
variables describing optimal cuts between the master and the sub-problems.
Accordingly, the contributions of this paper can be summarised as follows:

1. To extend the linearisation approach in [133] into a quadratic relaxation
of AC-NCUC problems. Such problems are usually solved by applying
methods, such as SOCP. SOCP is less mature [134], computationally
expensive in large scale, and may be less precise when loading conditions
are on the high side. This motivates the linearisation.

2. To devise an efficient solution mechanism for the proposed linearisation
on the basis of a circle approximation, which is an outer approximation
type. This mechanism is capable of selecting optimal cuts from a con-
tinuous solution space, leading to convergence in a few iterations and
enhancing standard SOCP results.

3.3
Mathematical Formulation
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3.3.1
AC Non-Convex Unit Commitment Formulation

min
Ξ

(∑
t∈T

(∑
i∈J

(
Ci.gi,t + CSU

i,t + CSD
i,t

)
+

∑
d∈D

(
Cqshed

d .gd,shed
d,t

)
+
∑
d∈D

(
Cshed

d .qd,shed
d,t

)))
; (3-1)

subject to:

ui,t.Gi ≤ gi,t ≤ ui,t.Gi, ∀ i ∈ J , t ∈ T ; (3-2)

0 ≤ gw
k,t ≤ G

w
k , ∀ t ∈ T , k ∈ WP ; (3-3)

ui,t.Qi
≤ qi,t ≤ ui,t.Qi, ∀ i ∈ J , t ∈ T ; (3-4)

0 ≤ qw
k,t ≤ Q

w
k , ∀ t ∈ T , k ∈ WP ; (3-5)∑

i∈Jn

gi,t −
∑

d∈Dn

gd,t +
∑

k∈Jn

gw
k,t +

∑
d∈Dn

gl,shed
d,t

−
∑

m∈Nn

pn,m,t = 0, ∀ n ∈ N , t ∈ T ; (3-6)

pn,m,t = Gn,m.V 2
n,t + Vn,t.Vm,t.(−Gn,m.Cosθn,m,t +

+ Bn,m.Sinθn,m,t), ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-7)

CSU
i,t ⩾ (ui,t − ui,0).KSU

i , ∀ i ∈ J , t = 1; (3-8)

CSD
i,t ⩾ (ui,0 − ui,t).KSD

i , ∀ i ∈ J , t = 1; (3-9)

CSU
i,t ⩾ (ui,t − ui,t−1).KSU

i , ∀ i ∈ J , t ∈ T \ {1}; (3-10)

CSD
i,t ⩾ (ui,t−1 − ui,t).KSD

i , ∀ i ∈ J , t ∈ T \ {1}; (3-11)

0 ≤ gl,shed
d,t ≤ gd,t, ∀ d ∈ D, t ∈ T ; (3-12)

0 ≤ ql,shed
d,t ≤ qd,t, ∀ d ∈ D, t ∈ T ; (3-13)∑

i∈Jn

qi,t −
∑

d∈Dn

qd,t +
∑

k∈Jn

qw,DA
k,t +

∑
d∈Dn

ql,shed
d,t +

−
∑

m∈Nn

qn,m,t = 0, ∀ n ∈ N , t ∈ T ; (3-14)

qn,m,t = (Bn,m − bshunt
n,m ).V 2

n,t − Vn,t.Vm,t.(Gn,m.Sinθn,m,t

+ Bn,m.Cosθn,m,t),

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-15)

p2
n,m,t + q2

n,m,t ≤ S
2
n,m,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-16)

V 2
n ≤ V 2

n,t ≤ V
2
n, ∀ n ∈ N , t ∈ T ; (3-17)
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with Ξ = {gi,t, gw
k,t, qi,t, qw

k,t, gl,shed
d,t , pn,m,t, ui,t ∈ {0, 1}, CSU

i,t , CSD
i,t , ql,shed

d,t , qn,m,t,

Vn,t, θn,m,t} is the set of primal decision variables. The formulation is not a
contribution of this work. For more details refer to [14, 127]. The objective of
the optimisation is depicted by (3-1), minimising total cost for a system op-
erator for supplying energy, start-up/shut-down costs for generation, and, ac-
tive/reactive power load-shedding costs. The constraints (3-2) and (3-3) refer to
the minimum and maximum capacity for conventional and weather-dependent
generators. Having multiplied by binary variables, u ∈ {0, 1}, implies that re-
spective units are scheduled to start-up or shut-down when active. Constraints
(3-4) and (3-5) relate to reactive power limits for conventional and weather-
dependent generators. Constraint (3-6) is the active power balance equation.
Equation (3-7) defines the active power flow with θn,m, defined by:

θn,m = θn − θm, ∀ m ∈ Nn, n ∈ N . (3-18)

Equations (3-8), (3-9) activate start-up/shut-down costs when units are
on/off, respectively for the initial hour, (3-10), (3-11) for the remaining hours.
(3-12) and (3-13) depict the load-shed limits bounded by active/reactive power
demand, respectively. Constraint (3-14) describes the reactive power balance.
Equation (3-15) defines the reactive power flow. Equation (3-16) gives the
apparent power limits for lines. Equation (3-17) provides the voltage limits for
the nodes.

3.3.2
Second-Order Cone Reformulation

Constraints (3-7) and (3-15) are non-convex due to the trigonometric
aspect of AC power flow given by cosine and sine functions. A reformulation of
power flow [129] is obtained by defining new variables cn,m and sn,m as follows:

cn,n,t = V 2
n,t, ∀ n ∈ N , t ∈ T ; (3-19)

cn,m,t = Vm,t.Vn,t.Cosθn,m,t,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-20)

sn,m,t = Vm,t.Vn,t.Sinθn,m,t,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-21)

Inserting these into the active and reactive power flow equations (3-7)
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and (3-15), (3-22) and (3-23) are obtained:

pn,m,t = Gn,m.cn,n,t −Gn,m.cn,m,t +

+ Bn,m.sn,m,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-22)

qn,m,t = (Bn,m − bshunt
n,m ).cn,n,t −Gn,m.sn,m,t+

−Bn,m.cn,m,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-23)

By using the Pythagorean identity and the symmetric properties for sine
and cosine functions [129], (3-24)–(3-26) are obtained [14]:

cn,m,t = cm,n,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-24)

sn,m,t = −sm,n,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-25)

c2
n,m,t + s2

n,m,t = cn,n,t.cm,m,t,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-26)

The equality constraint (3-26) represents a non-convex region. Its second-
order conic relaxation is given by the inequality constraint (3-27):

c2
n,m,t + s2

n,m,t ≤ cn,n,t.cm,m,t, ,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-27)

3.4
Solution Methodology

The model given by (3-1)–(3-6), (3-8)–(3-14), (3-16)–(3-17), (3-1), (3-6)–
(3-7) and (3-11) is a mixed-integer SOCP relaxation for the non-convex
AC-NCUC problem. The latter may not be efficiently solved with modern
commercial solvers even when the instance size is medium to large [14].
Additionally, SOCP can become inexact under high demand, tight reactive
power-generation limits, etc. [129, 135]. To address this, firstly, we linearise
the quadratic relaxation for the conic (3-27) and quadratic (3-16) constraints.
Next, we provide a circle (outer) approximation algorithm which makes a
selection of optimal cuts at each iteration.

3.4.1
Quadratic relaxation of SOCP-NCUC

The quadratic relaxation of SOCP AC-NCUC is given by inserting the
valid bounds for cn,m,t and sn,m,t into (3-27) leading to (3-33). The resulting
problem given by (3-28)-(3-34) is a mixed-integer quadratic problem, which is



Chapter 3. Computational Techniques and Model Accuracy in Unit
Commitment and AC Optimal Power Flow 74

hard to solve efficiently by commercial solvers [136]:

min
Ξ

Equation (3-1); (3-28)

subject to:

Constraints: (3-2) – (3-6) and (3-8) – (3-14); (3-29)

V 2
n ≤ cn,n,t ≤ V

2
n, ∀ n ∈ N , t ∈ T ; (3-30)

cn,m,t = cm,n,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-31)

sn,m,t = −sm,n,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-32)

0 ≤ c2
n,m,t + s2

n,m,t ≤ V
2
n.V

2
m,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-33)

0 ≤ p2
n,m,t + q2

n,m,t ≤ S
2
n,m, ,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-34)

3.4.2
Circle (outer) approximation

We apply the linearisation approach given in [133] to the quadratic con-
straints (3-33) and (3-34). To this end, let Set A be a discretisation of a con-
tinuous range of (−Sn,m, Sn,m). Similarly, let Set A′ be a discretisation of a
continuous range of (−V n.V m, V n.V m). Then (3-35)–(3-36) linearly approxi-
mates (3-33) and (3-34).

−
−αn,m,t.pn,m,t + S

2
n,m√

S
2
n,m − α2

n,m,t

≤ qn,m,t ≤

−αn,m,t.pn,m,t + S
2
n,m√

S
2
n,m − α2

n,m,t

,

∀ m ∈ Nn, n ∈ N , t ∈ T , α ∈ A; (3-35)

−
−α′

n,m,t.cn,m,t + V
2
n.V

2
m√

V
2
n.V

2
m − α′

n,m,t
2
≤ sn,m,t ≤

−α′
n,m,t.cn,m,t + V

2
n.V

2
m√

V
2
n.V

2
m − α′

n,m,t
2

,

∀ m ∈ Nn, n ∈ N , t ∈ T , α′ ∈ A′; (3-36)

The outlined linearisation, described by (3-35)–(3-36) is based on the
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following concept. Let qn,m,t be approximated by α enumerated with its values
within the Set A. Any p tangent to the circle would satisfy (3-37):

p2 + q2 = S
2
, (3-37)

This implies that the slope of the lines tangent to the circle is given by (3-38):

m = q

p
= ± α√

S
2 − α2

, (3-38)

The general equation of the tangents to a circle, e.g., formed by (3-37),
is given by:

q = m.p± S.
√

1 + m2, (3-39)
By inserting the equation for slope m (3-38) into (3-39) we obtain the general
equation, (3-40), describing the tangents to the circle, (3-37):

q = ± α√
S

2 − α2
.p± S.

√√√√1 + α2

S
2 − α2

, (3-40)

Similarly, the equation describing the tangent to the circle prescribing the
feasible region for sn,m,t and cn,m,t can be drawn. The latter along with (3-40)
with inequalities imposed, would result in (3-35) and (3-36). Consequently,
(3-28)–(3-32) and (3-35)–(3-36) provide a circle outer linear approximation to
the non-convex AC-NCUC problem. This is a MILP, which may require a large
number of discrete values for α and α′ enumerating its feasible values, which
may not be efficiently solved. In addition, some of the lines may be redundant.

3.4.3
Algorithm

In order to address the efficiency aspects of the circle outer linear approx-
imation approach illustrated in the previous section, we propose Algorithm 1,
based on a master problem and sub-problems. The algorithm intrinsically se-
lects the optimal cuts at each iteration. Therefore, after the Initialisation step,
optimal lines are selected through the algorithm from a continuous set for fea-
sible values of linearisation-related variables α and α′.

The cut procedure is outlined in Fig. 3.2. First, given optimal solutions
(p0, q0) obtained from the master problem, a projection onto the circle describ-
ing the feasible region p2 + q2 ≤ S

2 is taken. Let (p′
0, q0) be this projection.

A tangent (cut) to the circle passing through this point is drawn (Tangent
1 ). This cut is added to the master problem as a constraint at the following
iteration. At the second iteration, (p1, q1) optimal solutions are drawn from the
master problem. Similarly, its projection onto the circle is calculated, (p′

1, q1).
A tangent to the circle going through this point is included as a constraint to
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the master problem for the next iteration (Tangent 2 ). This process is repeated
until the optimal point is sufficiently close to the circle under a tolerance level.

In the Initialisation step, the algorithm initialises the iteration counter,
ν, and, the initial set value for discretisation-related variables α and α′. A
master problem is constructed by (3-41)–(3-47), which includes linearisation
for circle approximation of SOCP constraints. Therefore, it becomes a MILP
problem.

Master problem solution:

min
Ξ

Equation (3-1); (3-41)

subject to:

Constraints: (3-2) – (3-6) and (3-8) – (3-14); (3-42)

V 2
n ≤ cn,n,t ≤ V

2
n, ∀ n ∈ N , t ∈ T ; (3-43)

cn,m,t = cm,n,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-44)

sn,m,t = −sm,n,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-45)

−
−α

(µ)
n,m,t.pn,m,t + S

2
n,m√

S
2
n,m − α

(µ)
n,m,t

2
≤ qn,m,t ≤

−α
(µ)
n,m,t.pn,m,t + S

2
n,m√

S
2
n,m − (α2
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,

∀ m ∈ Nn, n ∈ N , t ∈ T , µ = 0, ..., ν; (3-46)
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,

∀ m ∈ Nn, n ∈ N , t ∈ T , µ = 0, ..., ν; (3-47)

In Step 1, sub-problems are solved solely for the purpose of computing
the projection of (p, q) and (c, s) onto their respective circular feasible regions
given (3-33) and (3-34), respectively. Based on these projections, update of
α(ν), α′(ν) is performed for iteration ν. More precisely ∀ m ∈ Nn, n ∈ N , t ∈
T , compute projection of (pn,m,t, qn,m,t) onto its respective circle given by
(p′

n,m,t, qn,m,t):

(p′2
n,m,t)(ν) = S

2
n,m − (q2

n,m,t)(ν−1),

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-48)

Similarly, compute projection of (cn,m,t, sn,m,t), defined by c
′(ν)
n,m,t, s

(ν−1)
n,m,t ) onto
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its respective circle:

(c′2
n,m,t)(ν) = V

2
n.V

2
m − (s2

n,m,t)(ν−1),

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-49)

It is straightforward to show that the respective linearisation variables are to
be chosen as:

α
(ν)
n,m,t ← p′(ν−1)

n,m,t , ∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-50)

α
′(ν)
n,m,t ← c′(ν−1)

n,m,t ,∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-51)
In Step 2 a convergence check is done based on a gap analysis, which is

calculated as the distance to the circle described by the constraint (3-34).
When the Gap given by (3-52) is less than or equal to the tolerance level

ϵ, the algorithm stops. Otherwise, in Step 3, it updates the master by adding
new cuts, (3-46) and (3-47). The algorithm goes on with Step 1.

Gap = (c2
n,m,t)(ν−1) + (s2

n,m,t)(ν−1) − V
2
n.V

2
m,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-52)

Algorithm 1 Decomposition Algorithm for Linearisation of Circle Approxi-
mation of SOCP

Initialisation:

Set µ← 0; Set ν ← 0;
Set αν

n,m,t ← αini
n,m,t, ∀ m ∈ Nn, n ∈ N , t ∈ T ;

Set α′
n,m,t

ν ← α′
n,m,t

ini, ∀ m ∈ Nn, n ∈ N , t ∈ T ;
Solve master problem given by (3-41)–(3-47), store its optimal
solution (pν

n,m,t, qν
n,m,t, cν

n,m,t, sν
n,m,t), and, objective function value

TotalCost(ν);

Iteration ν ≥ 1

Step 1: Run sub-problems. ∀ m ∈ Nn, n ∈ N , t ∈ T , compute
projection of (p, q) on its respective circular region: ((p′)(ν−1), q(ν−1)),
where (p′2)(ν−1) = S

2 − (q2)(ν−1)). Similarly compute projection
of (c, s) on its respective circle: (c′)(ν−1), s(ν−1)) where (c′2)(ν−1) =
V

2
n.V

2
m−(s2)(ν−1). Set α(ν) ← (p′)(ν−1). Set (α′)(ν) ← (c′)(ν−1). Store

α(ν), α′(ν);
Step 2: If Gap ≤ ϵ, then stop. Otherwise, go to Step 3;
Step 3: ∀ µ = 1, ..., ν, solve master problem consisting of (3-41)–
(3-47). Store its optimal solution (p(ν)

n,m,t, q
(ν)
n,m,t, c

(ν)
n,m,t, s

(ν)
n,m,t), and,
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objective function value, TotalCost(ν). Set ν ← ν + 1. Go to Step
1.

3.5
Numerical Experiments

In this section, we demonstrate the effectiveness of the proposed method-
ology in two case studies. All numerical experiments are performed on an Intel
(R) Core (TM) i7-8550U CPU, 1.99 GHz with 8 GB of RAM machine under
JuMP and CPLEX 22.1.0. The tolerance level for the stopping criteria is set
to 10−6 for all loading levels. Both case studies are run for a 6-hour period.
The demand curve is constructed by applying a multiplier, namely the vector
[1.034, 1.023, 0.986, 0.953, 0.943, 0.937], to the base demand level. Two cases are
tested under three system-loading conditions - low, medium and high.

3.5.1
5-Bus System: Case Study 1

This case study is adapted from [32]. The illustrative system is made up of
5 buses, 6 transmission lines and 5 generators. The data are presented in Table
3.1. The apparent power limit of the lines is 200 MW. Start-up/shut-down
costs are set at 50% of marginal costs. Reactive power limits of generators and
reactive power demand are set at 20% of their active power limits and demand
at the related node. Demand per node is considered to be 1.2 and 0.7 times
that of the medium level reported in Table 3.2 for the high-loading and low-
loading cases, respectively. The objective function’s convergence behaviour is

Table 3.1: 5-Bus generation data.

Type Max. Max. Marginal Bus
capacity ramping cost number

[MW] [% / h] [$ / MW]

G1 40 100 14 1
G2 170 100 15 1
G3 520 100 30 3
G4 200 70 40 4
G5 600 70 10 5

presented in Fig. 3.1.
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Table 3.2: 5-Bus line and demand data.

Lines From To x r Demand Demand
[p.u.] [p.u.] node [MW]

L1 1 2 2.81 0.06 D2 300
L2 1 4 3.04 0.31 D3 300
L3 1 5 0.64 0.23 D4 400
L4 2 3 1.08 0.24
L5 3 4 2.97 0.51
L6 4 5 2.97 0.12

Figure 3.1: Total cost [$] per iteration for medium-loading case.

Table 3.3 summarises the computational results, compared to the stan-
dard SOCP reported in Table 3.4. The algorithm needs 6–7 iterations to con-
verge and generates computational savings under all loading levels of approxi-
mately 55-80%. Total cost is approximately the same for the low-loading level.
The algorithm leads to 0.8% lower costs for the high, and, 3.9% for the medium
case in relation to the SOCP results. A constraint violation, ConsViol, is de-
fined which measures the deviation of the results with respect to the original
non-convex equality constraint (3-26). This gives an indication of the quality
of the obtained results. More precisely:

ConsViol =∥ (c2
n,m,t)(ν−1) + (s2

n,m,t)(ν−1) − cn,n,t.cm,m,t ∥,

∀ m ∈ Nn, n ∈ N , t ∈ T ; (3-53)

Max. ConsViol refers to the maximum observed constraint violation for all lines
and time periods. Table 3.3 and Table 3.4 show that the algorithm provides
more precision due to markedly lower constraint violations, constituting ca.
2-5% of that of SOCP. Intuitively, because the algorithm - as an outer
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approximation - pushes solutions towards the circle’s boundary.

Table 3.3: Proposed Algorithm - Case 1, Total costs, computational time,
number of iterations and Max. ConsViol for each system-loading level.

Total Cost Max. ConsViol Comp.
[$] Time [s] # Iter

High 25,759.91 4.83 0.024 7
Medium 18,271.14 1.93 0.015 6

Low 9,959.92 5.68 0.018 6

Table 3.4: SOCP - Case 1, Total costs, computational time and Max. ConsViol
for each system-loading level.

Total cost Max. ConsViol Comp.
[$] Time [s]

High 25,972.02 119.82 0.052
Medium 19,002.86 112.95 0.082

Low 9,960.00 110.66 0.092

3.5.2
240-Bus System: Case Study 2

A realistic 240-bus test system for California and the Western Electricity
Coordinating Council (WECC) is applied, network data for which are out-
lined in [137]. It consists of 448 branches, 959 conventional and 35 weather-
dependent generators with a total capacity of 99.745 GW. A total of 139 loads
sums up to 62.45 GW, 49.872 and 39.898 GW under high-, medium-, low-
loading, respectively.
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Figure 3.2: Illustrative cut procedure.

A summary of assumed operational constraints is provided in Table 3.5.
Weather-dependent generation is considered deterministic. Load-shedding cost
for active and reactive power is set at $2,000 per MWh [116].

Table 3.5: Case 2, 240-Bus generation data.

Type Max. Start-up Shut-down
ramping cost cost
[% / h] [$ / MW] [$ / MW]

Hydro 10 0 0
Gas 20 79 7.9
Coal 24 147 14.7

Other 10.00 0 0
Nuclear 27 160 160

Weather-dep. 100 0 0

Table 3.6 illustrates the results in relation to the devised algorithm under
various system-loading levels. Under medium- and low-loading, the algorithm
needs more time to search for feasible solutions. This is related with the
master problem. Sub-problems solely check the solution quality given by the
master and communicate new cuts back to the master. This characteristic,
relying on minimum necessary exchange between master and sub-problems,
seems beneficial in terms of computational time. Table 3.6 shows that the
algorithm requires 2–3 iterations to converge. Total costs under the algorithm
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and SOCP, latter reported in Table 3.7, are equal for low- and medium-loading,
whereas high-loading outcomes differ. Computational time of the algorithm
is solely 6.6% of the SOCP with medium-loading. Max. ConsViol, regarding
the original non-convex constraint, indicates a lower dispersion of results
under the algorithm for high- and medium-loading. With low-loading, however,
maximum violation is 1.7 times more. The algorithm’s average violation is 75%
of SOCP.

Fig. 3.3, shows ConsViol per hour with all lines considered. Except for
one extreme point above 90.0, the deviations are minimal, all less than 2.34.
Compared to the SOCP, shown in Fig. 3.4, the devised algorithm gives rise to
solutions with a notably lower ConsViol. This also implies it can yield more
accuracy in power flow scheduling for a heavily-loaded system.

Table 3.6: Proposed Algorithm - Case 2, Total costs, computational time,
number of iterations and Max. ConsViol for each system-loading level.

Total Cost Max. ConsViol Comp.
[MM$] Time [s] # Iter

High 97.93 94.18 24.01 2
Medium 2.52 3.06 50.67 2

Low 1.63 5,500.20 51.04 3

Table 3.7: SOCP - Case 2, Total costs, computational time and Max. ConsViol.
for each system-loading level.

Total cost Max. ConsViol Comp.
[MM$] Time [s]

High 99.20 3,383.81 24.59
Medium 2.52 3,121.68 767.64

Low 1.63 3,160.83 106.09
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Figure 3.3: Case 2: Constraint violation under the algorithm high-loading case.

Figure 3.4: Case 2: Constraint violation under the SOCP high-loading case.

3.5.3
Computational performance curves appending numerical experiments

Note that this Section is not part of the publication [20]. However, it
extends the analysis performed in the respective publication.

In this section, performance profiles are developed in order to evaluate,
benchmark and compare optimisation outcomes under different approaches. A
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set of metrics, such as wall-clock and CPU time and number of iterations are
presented, which enable comparison of different algorithms. A certain chosen
instance or minority of problems for which the results are populated may dom-
inate the overall results. To address these, performance profiles are proposed
in the literature. They are defined as (cumulative) distribution functions for
a performance metric providing a means for visualising the performance dif-
ferences amongst various solvers or algorithms, while circumventing choice of
arbitrary parameters and explicitly showing failure of obtaining solutions for
some instances [138]. In this thesis, the methodology to develop performance
profiles follows works [138, 139].

For the numerical experiments, 5-Bus system of Case 1, 240-Bus System
of Case 2 cover a 24-hour time horizon. As a Case 3, 118-Bus IEEE test system
is included in order to further show the robustness of the method proposed.

In each Case, 100 instances for the load level are generated by applying
a random multiplier, ρ to the fixed demand level in the earlier Sections, i.e.,
ρ = (0.50, 0.70), ρ = (0.71, 1.20) and ρ = (1.21, 2.00) for low, medium and high
loading-conditions of the system, respectively. (a, b) represents a continuous
uniform distribution with the boundary values of a and b. For each instance,
reactive power demand is set equal to 20% of the active power demand, which
is a common procedure.

In the experiments, the time is measured as wall-clock-time, and in order
to mitigate the effect of recompilation time the experiments are run twice, and
the results for the second one are recorded where the recompilation effect is
lower or minimal.

In Fig. 3.5, Fig. 3.6 and Fig. 3.7 performance curves are illustrated in Case
1, Case 2 and Case 3, respectively. The x-axis represents the total cumulative
time in seconds in natural logarithmic scale for solving the corresponding
percentage of 100 instances on the y-axis.

Fig. 3.5 in relation to Case 1 shows that low- and medium-loading
the proposed algorithm outperforms the standard SOCP in varying degrees.
After the first 25 instances the algorithm saves computational time in natural
logarithm by 9.17% and 3.91%; after 50 instances 1.44%; 2.49%, 0.95%, 3.08%
and at then end of 100 instances by 0.07% and 2.94%, in respective order of
loading. The first 25 instances the savings are more considerable than when,
for instance, all 100 are solved. Note that negative time in some first instances
can appear because of the natural logarithmic scale used.

Note that the first instances under the SOCP take relatively long time
albeit the fact that the compilation time aspect is mitigated by consecutive
runs. It is most likely due to the fact that the first random problem instance
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is relatively difficult to solve under the SOCP. Excluding this instance, would
not change the overall conclusion.

Regarding the high-loading conditions, however, the proposed algorithm
depicts a higher performance in the first three instances than the SOCP,
thereafter this becomes no longer the case. The algorithm takes 16.91% more
time than the standard SOCP when all 100 instances are run.

In Fig. 3.6, in relation to Case 2, one can observe that the algorithm
depicts a higher performance under low- and high-loading, 2.51% and 1.81%
of savings in natural logarithmic terms. For the medium-loading, between
instances 3 until 12, the algorithm does not depict a better performance.
Thereafter, it starts outperforming and saves 1.80% of time after having run
all the instances.

In Fig. 3.7, regarding Case 3, the algorithm clearly depicts computational
time savings after 100-instance-run - by 9.90%, 5.14% and 5.74% under low-
medium-, and high-loading - in given order.

Note that mean value of the runtime could also be used for comparison
purposes. However, it would not be able to capture the entire characteristics
of computational time which can significantly differ in each instance.

Nevertheless, the descriptive statistics for computational time, given in
seconds, regarding the algorithm is provided in Table 3.8 for Case 1, Case 2
and Case 3 as well as for different loading situations. Table 3.9, on the other
hand, presents descriptive statistics for the standard SOCP.

Table 3.8: Descriptive statistics for computational time under Algorithm for
each system-loading level.

Computational time [s.] Algorithm
Case # Load min. 25% quantile 50% quantile 75% quantile max.

low 0.370 0.446 0.618 0.783 1.231
medium 0.555 0.637 0.729 0.897 1.905Case 1
high 0.703 0.971 1.025 1.093 1.532
low 23.869 29.065 32.510 44.171 106.888
medium 13.426 22.234 28.770 48.138 109.310Case 2
high 36.156 36.916 37.924 39.029 52.297
low 12.468 13.118 13.952 16.169 86.189
medium 12.859 13.796 14.128 14.828 28.240Case 3
high 12.796 13.541 13.795 14.088 16.506

Also note that computing time is mainly related to the solution of the
master problem. Sub-problems take very low computational time, since they
are mainly for calculating the parameters for the cuts for which the inputs
come from the master problem.
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Table 3.9: Descriptive statistics for computational time under SOCP for each
system-loading level.

Computational time [s.] SOCP
Case # Load min. 25% quantile 50% quantile 75% quantile max.

low 0.484 0.527 0.593 0.688 2.918
medium 0.651 0.775 0.816 1.012 2.973Case 1
high 0.357 0.410 0.471 0.531 2.869
low 12.080 31.945 37.450 45.100 156.430
medium 10.420 34.961 38.400 43.725 150.451Case 2
high 14.280 35.900 38.800 45.275 150.719
low 18.531 25.201 29.629 51.052 82.032
medium 18.014 19.987 21.181 22.990 34.223Case 3
high 14.913 19.096 21.156 22.620 43.689

Figure 3.5: Case 1, 5-bus, 24-hours: Computational performance curves plot-
ting percentage of instances solved vs. runtime in natural logarithm of seconds
of each instance solved.
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Figure 3.6: Case 2, 240-bus, 24-hours: Computational performance curves
plotting percentage of instances solved vs. runtime in natural logarithm of
seconds of each instance solved.

Figure 3.7: Case 3, 118-bus, 24-hours: Computational performance curves
plotting percentage of instances solved vs. runtime in natural logarithm of
seconds of each instance solved.

For expository purposes, constraint violations for Case 1 are provided in
Fig. 3.8 and Fig. 3.9 for the high-loaded system conditions. As similar patterns
are observed for Case 2 and Case 3, solely the results for Case 1 are presented.
Constraint violations are computed based on Equation (3-53) for 100 instances,
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which are in per unit (p.u.) basis, and violation ranges are plotted accordingly.
Note that this metric also demonstrates the deviations with regard to the
feasibility of the obtained solutions under the original non-convex AC power
flow formulation. It can be observed that albeit some variations per hour,
constraint violations under the standard SOCP is in the range of 0.18-0.30 p.u..
Regarding the proposed algorithm the constraint violation range is 0.002-0.010
p.u.. We note that the reduction of constraint violations under the proposed
algorithm is an anticipated result because of the fact that the algorithm pushes
the solutions towards the boundary of the quadratic relaxation. The latter is
in general tends to be tighter than the SOCP relaxation which includes the
interior of the cone.

Figure 3.8: Case 1, 5-bus, 24-hours: Constraint violations in p.u. for 100
instances under the algorithm high-loading case.
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Figure 3.9: Case 1, 5-bus, 24-hours: Constraint violations in p.u. for 100
instances under the SOCP high-loading case.



4
Computational Techniques and Model Accuracy in DSO-
TSO Coordination Problems for Congestion and Voltage
Management

This Chapter is on the basis of and reusing parts of the journal article,
which is under review [Paper B] Martin, N. C., & Fanzeres, B. A Two-Level
ADMM Algorithm for Multi-Agent DSO-TSO Congestion Management and
Voltage Control Coordination with Limited Information Exchange. In process
of publication. This article is herewith referenced and cited as [140], which
may be subject to changes in its final version, and incorporate other numerical
experiment settings compared to the content of this Chapter.

We note that the Chapter focuses on the technical aspects of DSO-
TSO coordination, and specifically congestion and reactive power or voltage
management. A number of sociological, technical and economic challenges need
to be addressed for the implementation of DSO-TSO coordination, for which
the review [24] can be referred to. Firstly, system operations and dispatch are
becoming more complex, for which DERs need to be orchestrated. To this
end, accuracy of network information is paramount. Especially distribution
networks tend to have limited observability, in particular at low-voltage level.
Fairness aspects for the services provided by DERs are also of importance,
which need to addressed. Vulnerability of the network to cyberattacks may
increase as a result of more access to network information. Finally, DSO-TSO
coordination requires policies and regulations for its implementation. There
are various coordination frameworks considered in the literature, which can
be mainly classified as TSO-managed, TSO-DSO hybrid-managed or DSO-
managed models, depending on which entity is the center of coordination.
This Chapter, among others, attempts to bring an equilibrium point of view
into the discussion, where DSO and TSO entities are considered without any
hierarchy.

4.1
Background for Mathematical Formulations

In this Chapter, a bus injection type, and voltage-based formulation of
AC OPF is constructed when applicable. Voltage magnitudes at each bus
n ∈ N , are given by Vn, and are represented by a polar form, such that
ei.θn = Cost(θn) + i.Sin(θn), where θn is the phase angle of the respective
bus measured in radians, θn ∈ (−π, π], ∀nN . The notification is simplified
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such that instead of |Vn|, the notification Vn is used to represent voltage
per bus. |Vn| is the modulus of the complex voltage Vn = |Vn.ei.θn . Though
not explicitly stated during the Chapter, admittance matrix formulation is
on the basis of rectangular coordinates, such that Y n,m = Gn,m + i.Bn,m.
Balanced, single-phase equivalent model as well as steady-state conditions are
assumed throughout. Furthermore, especially transmission networks, tend to
have meshed structures, which require additional non-convex constraints in
the formulation for the consistency of phase angles [13]. This aspect is not
considered and left as a future work.

Moreover, energy storage systems related modelling assumes ideal storage
systems. It ignores fast response of such units which can be captured in
tighter time scales, varying charging or discharging efficiencies, degradation
aspects, etc. The storage systems are assumed to be owned, or operated in
such a way that its sole purpose is to contribute to the least-cost operation of
the system. The latter is, in practice, possible by bilateral contracts between
system operators and storage owners.

Finally, under the decentralised and distributed structures discussed, the
agents are assumed to act truthfully and communicate the true value of the
computed primal and dual variables.

4.2
Introduction

Large-scale penetration of distributed energy resources (DERs) along
with network constraints are increasingly causing congestion and voltage prob-
lems due to time-varying power flows. The participation of DERs, such as
battery energy storage systems (BESSs) and weather-dependent generation,
can be located at medium voltage networks, managed by distribution system
operators (DSOs). Furthermore, although transmission and distribution sys-
tems are physically interconnected, their standalone operations are bounded
by their respective jurisdictions. As such, the operators individually do not
have full visibility or direct control of the overall power system [22]. Given this
interconnectedness, uncoordinated actions of transmission system operators
(TSO) and DSOs can jeopardise security of supply, just as their cooperation
can result in more efficient operations [141, 22].

In order to mitigate congestion or voltage problems in the respective sys-
tems, central-planning-based approaches - reliant on optimisation of transmis-
sion and distribution system costs cumulatively - are not realistic or adequate
[22]. This setting ignores the individual optimisation of system operators and
information-sharing aspects amongst different networks governed by each en-
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tity [22]. Conversely, hierarchical or multi-level approaches define one of the
entities as a leader in the coordination problem. These approaches assume
that at least one of the operators has full knowledge of the other system’s con-
straints [142, 143], and tend to be computationally expensive [24]. Distributed
approaches have been proposed in the literature, which allows a collaborative
computation between different entities, to attain a system-level objective [99].
It is based on the notion of breaking down a complex mathematical problem
into smaller problems which are computed by local agents and coordinated
with each other so that an optimal or near-optimal solution to the system
objective is achieved. Distributed computation brings in the following main
advantages against a centralised computation [13, 144]:

i) Centralised approaches need high bandwidth communication architec-
ture, which tends to be expensive, due to extensive amount of geographically
spread data that needs to be aggregated and stored by a central controller. In
distributed approaches, local data obtained through sensors and monitoring
tools are directly used [99], and a limited amount of data is interchanged
amongst sub-systems or with the central controller.

ii) Distributed computation brings in cybersecurity and resilience advan-
tages. In case the central controller disconnects, the whole system operations
can be impacted. Distributed computation, however, makes it possible local
sub-systems to continue operating in an asynchronous fashion by means of
local control functions. This would also be the case if a local sub-controller
defaults.

iii) Distributed computation has advantages in terms of network, cost
functions and constraints or sensitive measurement data privacy preservation,
because these do not need to be or to a limited degree shared between sub-
systems or with the central controller.

iv) Distributed computation is more adaptable to topology changes in
the system because of re-configuration as a result of faults or dynamic aspects
of the power and communication architectures [144]. When, for instance, some
local controllers are disconnected, other local controllers can continue normal
operations, and distributed OPF can be computed in an asynchronous fashion.
In case of a centralised optimisation, if the central controller collapses, then
the whole system can be disrupted [144, 145].

v) Distributed computation can potentially be more scalable, due to
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ability to perform parallel tasks, and efficient than a centralised one, espe-
cially when a large number of sub-systems and vast amounts of network and
measurement data involved [13].

The coordination problem involving coordination of multiple DSO-TSO
agents can be viewed as seeking for equilibrium operational set-points amongst
the involved entities governing their sub-systems, each of which having their
own objectives [141]. Reaching to such an equilibrium requires iterations
amongst the adjacent entities directly or via a central coordinator to exchange
data commonly regarding the interface power flows along with their prices
as a signal towards reaching eventually a consensus. The Alternating Direc-
tion Method of Multipliers (ADMM) algorithm, as a distributed approach, is
a widely used such computational method to handle DSO-TSO coordination
problems [146, 147, 148, 141]. The ADMM provides the advantage of perform-
ing parallel computing which potentially enhances solution speed [13]. How-
ever, the ADMM and its variants require significant penalty parameter tuning
and update process, suffering from numerical instability, and their convergence
may not be achieved within a reasonable time frame [149, 150]. In addition,
DSO-TSO coordination may involve multiple DSOs or TSOs in practice, which
can be represented by a multi-block ADMM problem, i.e., a separable problem
involving more than two operators when a suitable (Lagrangian) relaxation of
the coupling constraints are applied. Multi-block ADMM does not have con-
vergence guarantees [151]. The literature lacks works handling DSO-TSO co-
ordination problem with multiple operators which can warrant convergence at
least to a stationary solution.

ADMM method, generally, requires a - possibly virtual - central coordina-
tor to collect and aggregate data provided by each entity and redistribute. To
eliminate or reduce such a need while also reducing the data exchange amongst
the entities, decentralised versions of ADMM are proposed [144]. These ap-
proaches principally rely on exchanging information with the adjacent entity,
rather than aggregating exchanged data centrally. This can result in cyberse-
curity benefits, reduction of data storage needs and computational savings.

Moreover, power flow models describing the laws of physics in these sys-
tems, such as Kirchhoff’s and Ohm’s Law, are with non-linear and non-convex
AC power flow constraints, and are demonstrated to be non-deterministic
polynomial-time hard (NP-hard) even for radial networks [39], i.e., it cannot
be proven whether a solution to the problem can be found in polynomial time.
Solution approaches to these models are broadly categorised into i) non-linear
methods; ii) convex relaxations or approximations. Non-linear methods seek for
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globally or locally optimal solutions directly from the non-convex problem for-
mulation, the main approach being primal-dual interior-point methods (IPM).
Convex relaxations or approximations relaxes the power flow equations into
convex inequalities to which a global optimum solution to the relaxed problem
can be obtained. Linearisation-based techniques as well as second-order cone
programming and semi-definite programming-based approaches are categorised
in this work under convex relaxations or approximations.

The majority of works in the literature studying DSO-TSO coordination
apply a DC approximation to represent power flow for distribution networks.
However, DC power flow as a linear approximation to AC are not realistic for
distribution systems characterised by high resistance-to-reactance ratios [59,
58].

Yet, system and market operators tend to prefer applying linear program-
ming (LP)-based approaches in practice mainly due to the following motiva-
tions [63, 60]: i) LP (and Mixed-integer linear) solvers are more mature and
computationally robust compared to other type of solvers based on IPM or
convex relaxations, such as SOCP or SDP. Convergence under LP and convex
relaxations or approximations is guaranteed in case of a feasible-solution to
the problem exists; ii) IPM-based ones are shown to be sensitive to the ini-
tialisation and model formulation. Poor choice of the initial points can lead to
long computational time or non-convergence. iii) Locational Marginal Prices
(LMP) for market-clearing purposes are more straightforward to obtain out
of LP problems, and the obtained solutions are more transparent and inter-
pretable.

Other than linear approximations, a recent work [152] applies a second-
order cone programming (SOCP) convex relaxation to enhance AC OPF for
distribution networks within the context of DSO-TSO coordination in its case
study. Yet, under high-loading conditions, when thermal or voltage limits are
typically exceeded, leading to congestion or voltage problems, the SOCP can
result in large deviations between actual and predicted power flows [14].

To address these computational, network-information exchange-related
as well as power flow accuracy challenges for an effective multi-agent DSO-
TSO coordination to resolve operational problems jointly, in this work, a dis-
tributed decomposition algorithm is proposed based on a minimal informa-
tion interchange between all entities operating a distribution or transmission
network, following a distributed approach. In addition, a decentralised frame-
work is also proposed which removes the need for a central coordinator for
exchanging parameters amongst the entities while reducing the quantity of
data transfer which may translate into computational savings for large power
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systems. More precisely, a two-level nested-loop ADMM is designed [149, 150]
which enhances the penalty parameter tuning of standard ADMM and model
convergence accordingly. To this end, slack variables are introduced into the
coupling constraints between the DSO and the TSO problems. The inner loop
updates the Lagrange multipliers of the coupling constraints and the slack
variables. Using the solutions from the inner loop, the outer loop updates the
sensitivity of the slack variables and the respective penalty parameters. This
ADMM process enables mitigation of congestion and voltage problems in the
respective systems in a coordinated way. The framework is general enough to
address finding an equilibrium amongst multiple DSO-TSO entities. Moreover,
in order to improve the computation of interface power flows for a more efficient
coordination, a linearisation-based circle approximation and a decomposition
algorithm to solve AC OPF is also provided and embedded into the proposed
algorithm. This linear approximation is based on a recent work [20], poten-
tially outperforming the standard SOCP in terms of accuracy and computa-
tional efficiency, especially under high system-loading conditions characterised
by congestion and voltage problems. The results of the devised algorithm are
compared with standard ADMM with a standard SOCP as a benchmark.

4.2.1
Objectives and Contributions

The principal objective of this work is to devise a methodology to
enhance computational aspects of multi-actor DSO-TSO coordination in day-
ahead operational planning for the procurement of ancillary services to handle
operational issues regarding congestion and voltage management, address
network information-exchange aspects and accuracy of power flow computation
at the interface nodes. The contributions of this work are as follows:

1. Different from state-of-the-art DSO-TSO coordination models in the lit-
erature, the proposed model co-optimises active and reactive power pro-
curement costs arising from the changes in forecast for, e.g., renewable
generation to ensure security of supply by respecting all network con-
straints involved. The devised framework can handle multiple actors.
State-of-the-art techniques are incorporated in modelling enhancing ac-
curacy and computation, such as a linear BESS model, tighter than other
known linear formulations without binaries as in [139].

2. To enhance power flow modelling in order to closely align overall in-
volved transmission and distribution system operations for DSO-TSO
coordination. To this end, this work implements the method proposed in
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the recent work [20] based on a linearisation-based circle approximation
of AC power flow. This procedure potentially enhances computational
robustness and accuracy of AC OPF compared to, e.g., the standard
SOCP. The latter is regarded as a computationally tractable technique
with high accuracy at least for normal system conditions [19].

3. To devise an efficient solution procedure for the multi-actor DSO-TSO
congestion management and voltage control coordination problem, which
is a multi-period time-coupled problem with the presence of energy
storage systems. The proposed solution procedure is based on a two-
level nested ADMM framework in [150, 149]. This framework protects
network or other sensitive data of standalone entities. Different from
[150, 149], this work proposes decentralised consensus algorithm inspired
from [144] which solely requires exchange of data with the neighbouring
subsystems reducing the amount of interchanged data while a central
coordinator for this interchange may no longer be needed. Two-level
ADMM framework is shown to have convergence guarantees to an
approximate stationary solution for multi-block problems, which in the
particular context of this work in case of more than two system operator
agents are concerned. The works [150, 149] study non-convex AC OPF
without any convexification process. This work, however, studies convex
approximations and relaxations to the AC OPF within a DSO-TSO
coordination problem, where the obtained solutions are global optimal for
the convexified problem. Constraint violations compared to the original
non-convex formulation are shown to be minimal.

4.3
Mathematical Formulation

This work considers a general and broad framework with multiple trans-
mission and distribution networks, each of which operated by a TSO or a
DSO, respectively. These systems are interconnected via tie-lines, through
which active and reactive power flows are exchanged. Single-phase balanced
network models are presented. Steady-state conditions, and balanced, single-
phase equivalent power flow are assumed throughout. On a stand-alone basis
and without considering any coordination between the networks, a transmis-
sion system is customarily represented as an infinite source for the distribution
system analysis. Similarly, the distribution system is considered as an aggre-
gate load in the transmission system-related analysis [153]. This set-up ignores
effects of any potential coordination between these systems. DSO-TSO coor-
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dination framework, however, establishes relationship between variables of the
transmission and distribution networks at their interfaces.

In the analysed set-up, in this work, TSOs and DSOs coordinate amongst
each other to procure ancillary services for i) active power, i.e., with regard to
congestion management purposes; ii) reactive power, i.e., for voltage support
purposes after the clearance of the day-ahead schedule. This necessity arises
because the operators may have an updated forecast on the uncertain variables,
such as on renewable generation, towards real-time operations. Each operator
has the objective to co-optimise the costs for re-dispatching the units which
they operate due to deviations from the day-ahead schedule. This involves
remedying potential congestion and voltage problems at a least cost while
balancing demand and supply. The set-up is similar to those in [22, 65, 154].
Different from these stated works, this work co-optimises both active and
reactive power procurement costs, rather than focusing on one or the other.

4.3.1
Subsystem Operation Problem Formulation

This work regards the DSO-TSO cooperation problems from the per-
spective of finding equilibrium set points for operations of individual DSOs
and TSOs in a given interconnected system. To this end, this section presents
the non-linear and non-convex optimisation problem as a general problem re-
flecting each of the DSO and TSO’s optimisation problem for their day-ahead
operation planning after the settlement of the day-ahead markets.

Such a planning includes re-dispatch of all components based on the most
actual forecast for renewable generation and demand and flexibility procure-
ment for congestion management and voltage control for secure operations.

For each entity p, (DSO or TSO), the optimisation problem is formulated
in (4-1) – (4-39). This formulation incorporates all components and flexibility
procurement possibilities that each operator can have, though not necessary
that they have or utilise these components or options. The formulation also
includes the interface nodes of each entity with the adjacent entity, such that
Np = N p ∪ N∞

p , where set of nodes belonging to the entity Np contains both
local nodes N p and its nodes at the interface with other entities N∞

p .

min
Ξp

CJ
(
.
)

+ Cint
(
.
)

+ CB
(
.
)

+ CF
(
.
)

+ Ccurt
(
.
)

+ Cc
(
.
)

+ Csh
(
.
)
; (4-1)



Chapter 4. Computational Techniques and Model Accuracy in DSO-TSO
Coordination Problems for Congestion and Voltage Management 98

where:

CJ
(
.
)

=
∑
t∈T

( ∑
i∈Jp∪J W P

p

(
Ci.gi,t + Cq

i .(q+
i,t + q−

i,t)
))

; (4-2)

Cint
(
.
)

=
∑
t∈T

( ∑
n,m∈N ∞

p

(
Cint

n .(pint,+
n,m,t + pint,-

n,m,t) + Cq,int
n .(qint,+

n,m,t + qint,-
n,m,t)

)
; (4-3)

CB
(
.
)

=
∑
t∈T

( ∑
b∈Bp

(
Cb.
(
gcha

b,t + gdis
b,t

)
+ Cq

b .(q+
b,t + q−

b,t)
))

; (4-4)

CF
(
.
)

=
∑
t∈T

( ∑
f∈Fp

(
Cf .

(
g+

f,t + g−
f,t

)))
; (4-5)

Ccurt
(
.
)

=
∑
t∈T

( ∑
k∈J W P

p

(
Ccurt

k .gcurt
k,t

))
; (4-6)

Cc
(
.
)

=
∑
t∈T

( ∑
c∈Cp

(
Cc.(q+

c,t + q−
c,t)
))

; (4-7)

Csh
(
.
)

=
∑
t∈T

( ∑
d∈Dp

(
Cpsh

d .gpsh
d,t + Cqsh

d .qqsh
d,t

))
; (4-8)

subject to:∑
i∈Jn∪JW P

n

gi,t −
∑

d∈Dn

ĝd,t +
∑

k∈JW P
n

(ĝw
k,t − gcurt

k,t ) +
∑

f∈Fn

(g−
f,t − g+

f,t)+

∑
b∈Bn

(gdis
b,t − gcha

b,t ) +
∑

d∈Dn

gpsh
d,t −

∑
m∈Npn \{N ∞

pn
}
pn,m,t+

+
∑

m∈N ∞
pn

pint
n,m,t = 0,∀ n ∈ Np, t ∈ T ; (4-9)

pint
n,m,t = pint,+

n,m,t − pint,-
n,m,t,∀ n ∈ N∞

p ,∀m ∈ Np
∞
n , t ∈ T ; (4-10)

pn,m,t = Gn,m.(Vn,t)2 + Vn,t.Vm,t.(−Gn,m.Cos
(
θn,m,t

) +

+ Bn,m.Sin
(
θn,m,t

)
),∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-11)∑

i∈Jn∪JW P
n

qi,t −
∑

d∈Dn

q̂d,t +
∑

d∈Dn

qqsh
d,t +

∑
c∈Cn

qc,t +
∑

b∈Bn

qb,t+

−
∑

m∈Nn\{N ∞}
qn,m,t +

∑
m∈N ∞

n

qint
n,m,t = 0, ∀ n ∈ Np, t ∈ T ; (4-12)

qint
n,m,t = qint,+

n,m,t − qint,-
n,m,t,∀ n ∈ N∞

p ,∀m ∈ Np
∞
n , t ∈ T ; (4-13)

qi,t = q+
i,t − q−

i,t,∀ i ∈ Jp ∪ JW P
p , t ∈ T ; (4-14)

qc,t = q+
c,t − q−

c,t,∀ c ∈ Cp, t ∈ T ; (4-15)

qb,t = q+
b,t − q−

b,t,∀ c ∈ Cp, t ∈ T ; (4-16)

qn,m,t = (Bn,m − bshunt
n,m ).(Vn,t)2 − Vn,t.Vm,t.(Gn,m.Sin

(
θn,m,t

)+
BD

n,m.Cos
(
θn,m,t

)
),∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-17)

(pn,m,t)2 + (qn,m,t)2 ≤ (Sn,m)2,∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-18)

(V n)2 ≤ (Vn,t)2 ≤ (V n)2,∀ n ∈ Np, t ∈ T ; (4-19)
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Gi ≤ gi,t ≤ Gi,∀ i ∈ Jp ∪ JW P
p , t ∈ T ; (4-20)

−RDi ≤ gi,t − gi,t−1 ≤ RUi,t,

∀ i ∈ Jp ∪ JW P
p ,∀ t ∈ T \ {1}; (4-21)

−RDi ≤ gi,t − gi,0 ≤ RUi,t,

∀ i ∈ Jp ∪ JW P
p ,∀ t = 1; (4-22)

Q
i
≤ qi,t ≤ Qi,∀ i ∈ Jp ∪ JW P

p , t ∈ T ; (4-23)

Q
c
≤ qc,t ≤ Qc,∀ c ∈ Cp, t ∈ T ; (4-24)

Gcha
b ≤ gcha

b,t ≤ G
cha
b ,∀ b ∈ Bp, t ∈ T ; (4-25)

Gdis
b ≤ gdis

b,t ≤ G
dis
b ,∀ b ∈ Bp, t ∈ T ; (4-26)

SOCb ≤ SOCb,t ≤ SOCb,∀ b ∈ Bp, t ∈ T ; (4-27)

SOCb,t = SOCb,t−1 + [ηcha
b .gcha

b,t−1 −
1

ηdis
b

.gdis
b,t−1],

∀ b ∈ Bp, t ∈ T ; (4-28)

gcha
b,t ≤

(
SOCb − SOCb,t−1

)
/ηcha

b ,∀ b ∈ Bp, t ∈ T ; (4-29)

gdis
b,t ≤

(
SOCb,t−1 − SOCb

)
.ηdis

b ,∀ b ∈ Bp, t ∈ T ; (4-30)

gdis
b,t ≤ G

dis

b −
(
G

dis

b /G
cha

b

)
.gcha

b,t ,∀ b ∈ Bp, t ∈ T ; (4-31)

Q
b
≤ qb,t ≤ Qb,∀ b ∈ Bp, t ∈ T ; (4-32)∑

t∈T
g+

f,t =
∑
t∈T

g−
f,t,∀ f ∈ Fp; (4-33)

0 ≤ g+
f,t ≤ G

+
f,t,∀ f ∈ Fp, t ∈ T ; (4-34)

0 ≤ g−
f,t ≤ G

−
f,t,∀ f ∈ Fp, t ∈ T ; (4-35)

g−
f,t

G
−
f

+
g+

f,t

G
+
f

≤ 1,∀ f ∈ Fp, t ∈ T ; (4-36)

0 ≤ gcurt
k,t ≤ ĝk,t, ∀ k ∈ JW P

p , t ∈ T ; (4-37)

0 ≤ ggsh
d,t ≤ ĝd,t,∀ d ∈ Dp, t ∈ T ; (4-38)

0 ≤ qqsh
d,t ≤ q̂d,t,∀ d ∈ Dp, t ∈ T ; (4-39)

where Ξp = {{gi,t, gcurt
k,t , q+

i,t, q−
i,t, qw

k,t, gpsh
d,t , qqsh

d,t , gcha
b,t , gdis

b,t , SOCb,t, g+
f,t,

g−
f,t, q+

b,t, q−
b,t, q+

c,t, q−
c,t} ≥ 0 ∪ {pn,m,t, qn,m,t, Vn,t, θn,m,t, qc,t, qb,t, qi,t}} is the set of

decision variables for each entity p ∈ P .
The objective (4-1) minimises all operational costs for the operator or

subsystem p, co-optimising both active and reactive power related dispatch and
procurement of flexible sources - curtailment of renewable generation, storage
sources for active and reactive power, demand response as well as conventional
sources of flexibility of conventional components, such as flexible generators,
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capacitor banks in distribution grids or shunt capacitors in transmission grids
providing voltage support. More precisely: i) marginal costs of conventional and
renewable generators’ active power, reactive power - represented by the cost
function CJ

(
.
)

in (4-2); ii) active and reactive power import and export costs of
sub-system p through the interface with the adjacent DSO or TSO, represented
by the cost function Cint

(
.
)

in (4-3); iii) battery energy storage systems (ESS)
active and reactive power costs - described by the cost function CB

(
.
)

in (4-4);
iv) costs for the demand response provided through flexible loads by increasing
and decreasing their demand - described by the cost function CF

(
.
)

in (4-5); v)
curtailment costs for renewable generation - represented by the cost function
Ccurt

(
.
)

in (4-6); vi) marginal costs for capacitor banks - represented by the
cost function Cc

(
.
)

in (4-7); vii) active or reactive power load-shedding as a
costly last resort instrument (4-8).

Constraint (4-9) is the active power balance equation per node including
interface nodes of the respective subsystem p - conventional generation, fore-
cast renewable generation minus curtailment, load net of active power load-
shedding and demand response, active power provided or consumed by stor-
age system, power flow through the respective branch, as well as exported/
imported power flow if the node is at the interface with another subsystem.

Constraint (4-10) and (4-13) splits the active and reactive power export/
import into two positive variables to appropriately model absolute values, since
both positive and negative values represent a cost in the objective function.
Similar split is performed for constraints in relation to reactive power provided
by conventional and renewable generators (4-14), by capacitor banks (4-15),
and by batteries (4-16).

Equation (4-11) defines the active power flow formulation, which follows
an AC bus injection type of model with voltage magnitudes at each bus
represented in a polar form [19], such that active and reactive power injections
per bus at each time period are equal to the total injections and withdrawals
at the bus at that time period, i.e., pn,t = ∑

m∈Npn
pn,m,t,∀ m ∈ Npn, n ∈

Np, t ∈ T , and, qn = ∑
m∈Npn

qn,m, ∀ m ∈ Npn, n ∈ Np, t ∈ T . The phase
angle θn,m,t is given by:

θn,m,t = θn,t − θm,t,∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-40)

Constraint (4-12) is the reactive power balance, between demand minus
load-shed, and, supply by conventional, renewable generation, battery, capaci-
tor banks, and reactive power flow per node including interface nodes. Equation
(4-17) defines reactive power flow formulation.

Equation (4-18) describes the active and reactive power flow restricted
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by apparent power limits. Equation (4-19) limits voltage per node.
Constraint (4-20) – (4-23) is minimum and maximum capacity, ramp-

ing, reactive power limits for conventional and weather-dependent generation,
respectively. Equation (4-24) sets operational limits for capacitor banks pro-
viding reactive power support.

Equations (4-25) – (4-29) model charging, discharging and state-of-charge
(SOC) limits, and how SOC of each BESS depending on the SOC of the
previous period and charge and discharge quantities multiplied by efficiency
factors. BESS operations are typically captured by constraints involving binary
variables so that charging and discharging would not occur at the same
time. These binaries make the problem mixed-integer and non-convex, which
require significant extra computational resources. This work considers a linear
formulation without binaries which is proposed in [139]. This formulation is
shown to be tighter than other linear battery models in the literature, and
expected to provide solutions close to the exact mixed-integer linear model.
Non-exclusivity of charging and discharging are reflected in equations (4-29) -
(4-31) as in [139]. Equation (4-32) gives reactive power limits of each BESS.

Equation (4-33) – (4-36) are with respect to the flexible loads or demand
response, following the formulation in [65], maintaining energy balance of the
demand response sources over the analysed horizon to capture the fact that
demand remains the same over the studied period but can be shifted to another
hour by a percentage. In addition, bounds for the active power increase or
reduction by demand response providers and capturing non-exclusivity of load
increase and decrease for a given period, are provided respectively.

Equation (4-37) sets curtailment limits of weather-dependent units per
hour bounded by generation forecast. Constraints (4-38) and (4-39) give load-
shedding limited by active/reactive power demand, respectively.

4.4
Solution Methodology

The problem of each entity p is non-linear and non-convex due to power
flow-related trigonometric variables. In this Section Second-Order-Cone Pro-
gramming reformulation of each operator’s problem, and proposed ADMM-
based methods to obtain equilibrium points for this problem and computa-
tional enhancements with a Two-Level ADMM as well as a decentralised im-
plementation are described. In addition, a sequential linearisation for the AC
power flow formulation presented.
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4.4.1
Second-Order Cone Programming (Convex) Reformulation of Each Indi-
vidual Operator’s Problem

Following [20], the subsequent transformations are applied to the AC
power flow formulation:

cn,n,t = (Vn,t)2, ∀ n ∈ Np, t ∈ T ; (4-41)

cn,m,t = Vm,t.Vn,t.Cos
(
θn,m,t

)
,

∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-42)

sn,m,t = Vm,t.Vn,t.Sin
(
θn,m,t

)
,

∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-43)

These transformations result in:

pn,m,t = Gn,m.cn,n,t −Gn,m.cn,m,t +

+ Bn,m.sn,m,t, ∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-44)

qn,m,t = (Bn,m − bshunt
n,m ).cn,n,t −Gn,m.sn,m,t+

−Bn,m.cn,m,t, ∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-45)

Accordingly, equations (4-46)–(4-48) are obtained:

cn,m,t = cm,n,t, ∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-46)

sn,m,t = −sm,n,t, ∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-47)

c2
n,m,t + s2

n,m,t = cn,n,t.cm,m,t,

∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-48)

The equality constraint (4-48) constitutes a non-convex region, since it
describes the surface - excluding its interior region - of a rotated second-order
cone in four dimensions. This reformulation is exact for radial networks and
equivalent to the SDP relaxation; whereas for meshed networks additional
constraints need to be included with further specification of voltage angles for
exactness [19, 75]. The second-order conic relaxation of this reformulation is
provided by the inequality constraint (4-49) yielding a rotated second-order
cone now including its interior:

c2
n,m,t + s2

n,m,t ≤ cn,n,t.cm,m,t,

∀ m ∈ Npn, n ∈ Np, t ∈ T ; (4-49)
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The SOCP final formulation of each entity’s problem is provided below - which
is convex, and can be solved by a standard off-the-shelf solver. For each entity
p:

min
Ξp

Equation (4-1); (4-50)

subject to:

Constraints: (4-9), (4-10), (4-12) – (4-16), (4-18) – (4-39),

(4-44) – (4-47), and (4-49); (4-51)

4.4.2
DSO-TSO Common Centralised Problem

A DSO-TSO common, centralised problem which co-optimises all TSOs’
and DSOs’ objectives, given by fp(·),∀ p ∈ P representing each entity or
subsystem, mitigation of congestion and voltage management of embedded
systems, subject to all networks constraints of DSOs, TSOs including their
interfaces. Note that this centralised formulation is not a realistic or adequate
application, because no such centralised entity exists knowing all transmission
and distribution system parameters and constraints [22]. Furthermore, if the
entities have conflicting interests such a centralised problem may not be
directly constructed, except as a multi-objective optimisation problem. In this
work, all entities involved have the objective to minimise their cost function
which allows defining the central objective of the system as a co-optimisation
of costs for all entities subject to their individual operational constraints and
power flows at each branch including those linking interface buses of each
entity, i.e., tie-lines. Accordingly, the common centralised problem is provided
as a benchmark.

The centralised problem involves the so-called global or consensus vari-
ables as such they are common to more than one agent and the individual
agents need to agree on their value. Accordingly, it can be regarded as an
equilibrium-seeking problem on the joint variables, denoted as z. Let xp be
the vectors of decision variables of each entity p ∈ P .

The centralised problem can be abstracted as follows. Constraint (4-52)
comprises objective functions of the p-entities related problems, respectively.
Constraint (4-53) represents the coupling constraints related to the variables
at interface nodes and branches. Constraint (4-54) is the distinct feasible space
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for each entity.

min
x,z

∑
p∈P

(
fp(xp)

)
(4-52)

subject to:

xp − z = 0,∀ p ∈ P ; (4-53)

xp ∈ Ξp, ∀ p ∈ P ; (4-54)

4.4.3
Alternating Direction Method of Multipliers

In order to compute equilibrium set points for all entities [141] considering
their objectives and constraints, distributed methods such as ADMM-based
methods can be applied. These methods permit preservation of privacy of
sensitive and agent-specific data. ADMM, within the context of this work,
can also be interpreted as crunching complex and impracticable centralised
optimisation problem of the power system, by crunching it into smaller
problems and with a limited information interchange amongst the agents.

ADMM is based on the minimisation of the Lagrangian function, -
performed on its augmented form -, and update of dual variables. In the
ADMM, the primal variable updates are performed in an alternating or
sequential manner.

For the ADMM procedure, firstly the centralised problem is transformed
into a separable form, which is naturally not separable due to the subsystems
coupled with each other via the tie-lines, i.e., the linking constraint (4-54).
Additionally, as shown in [141], the common centralised problem can be
decomposed into each of the DSOs’ and TSOs’ sub-problems by relaxing
the coupling constraints, and solved in a distributed fashion. When adequate
conditions hold, centralised and distributed problems converge to the same
optimal solution and objective values.

By creating a local decision copy of the coupling variables x̃C
p per agent,

the centralised problem in a separable form can be formulated as follows.

min
x,z

∑
p∈P

(
fp(xp)

)
(4-55)

subject to:

x̃C
p − zC

p = 0,∀ p ∈ P ; (4-56)

xp ∈ Ξp, ∀ p ∈ P ; (4-57)

where xp includes local variables xp and coupling variables x̃C
p , i.e., xp =
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[xp, x̃C
p ]. The vector zC

p consists of global variables linking the same variables
duplicated in other subsystems.

The Lagrangian function is constructed as follows, where λp is the
Lagrange multiplier of (4-56):

Lρ(xp, z, λp) =
∑
p∈P

(
fp(xp) + λT

p .(x̃C
p − zC

p ) + ρ

2 . ∥ x̃C
p − zC

p ∥22
)
, ∀p ∈ P; (4-58)

Accordingly, at each iteration k, primal variable update is performed by:

xk+1
p = argminxp

(
fp(xp) + λk,T

p .xp + ρ

2 . ∥ x̃C
p − zk,C

p ∥2
2

)
,∀p ∈ P ; (4-59)

Dual update is performed by:

λk+1
p := λk

p + ρ.(x̃k+1,C
p − zk+1,C

p ),∀p ∈ P; (4-60)

Let (x̃p)w be the wth variable of x̃C
p . A mapping from copied coupling variables

x̃C
p onto the global variables zC

p is defined as g = G(p, w). Global variable
update is performed by calculating the average of all (x̃p)w related to zg:

zk+1
g :=

∑
G(p,w)=g

(
x̃k+1,C

p

)
w∑

G(p,w)=g 1
, ∀g ∈ Z; (4-61)

This standard consensus ADMM algorithm stops when the primal and dual
residuals in each sub-problem p is sufficiently small with an error tolerance
level of ϵ:

∥ sk+1 ∥2
2= ρ. ∥ zk+1,C

p − zk,C
p ∥2

2≤ ϵ1,∀p; (4-62)

∥ rk+1
p ∥2

2=∥ λk+1
p − λk

p ∥2
2≤ ϵ2, ∀p; (4-63)

4.4.4
Decentralised ADMM

ADMM, in general, requires a central coordinator which collects data
from subsystems, and aggregates and redistributes it during the optimisation
procedure. In order to mitigate the need for a central coordinator, this
work proposes a data exchange framework for the DSO-TSO coordination
problem in which data interchange is amongst the neighbouring operator
entities, or subsystems. This potentially reduces the communication and data
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storage needs, which can make the problem more scalable and computationally
efficient especially when realistic large-scale power systems are concerned. This
decentralised communication structure is inspired by [144].

The idea of this decentralisation is illustrated in Fig. 4.1 with 1 TSO
and 2 DSOs, or 3 subsystems S1, S2 and S3, which are interconnected with
one another. Each subsystem has one boundary bus, namely, t, b and j. The
branches connecting t− b, b− j and j − t are named as tie-lines. Accordingly,
power flow constraints at these boundary buses makes the centralised problem
not directly separable. For each subsystem, the coupling variables of boundary
buses are duplicated, such that set of local variables θb, θj, θt and copy variables,
those having superscripts, are formed.

Standard ADMM communication mechanism is shown in Fig. 4.2. Global
variables zC link the duplicated variables in different subsystems. For example,
zC

1 links θt, θS1
t , θS2

t . All copy variables calculated are transferred to the central
controller, which calculates the values for zC

1 , zC
2 , zC

3 by taking averages of the
copies received, and broadcasts to the subsystems. Detailed procedure of the
distributed ADMM with the central controller is outlined in the inner-loop of
the Algorithm 1.

The proposed decentralised communication strategy, based on [144], the
computed values for copy variables related to zC are communicated to the
assigned leading subsystem of the corresponding element in zC . The local
operator of the leading subsystem computes the respective global variable
zC ∈ Z, which is the average value of the collected data for the respective
consensus variable. This average value is sent back to the subsystems so that
they can use this updated value in their computation.

This communication strategy is shown in Fig. 4.3. Details of this decen-
tralised ADMM is presented in the inner-loop of the Algorithm 2. It can be
observed that the standard ADMM in Fig. 4.2 requires exchange of 18 data
points, whereas the proposed decentralised communication in Fig. 4.3 reduces
it to 12 data points.
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Figure 4.1: Illustration with 3-subsystems.

Figure 4.2: Standard ADMM with 3-subsystems.
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Figure 4.3: Decentralised ADMM with 3-subsystems.

4.4.5
Proposed Distributed vs. Decentralised Two-level ADMM Algorithm

Algorithm 1 outlines the two-level ADMM procedure. Two-level ADMM
is a nested loop, consisting of inner and outer loops, procedure searching
and updating two different sets of Lagrangian multipliers λ and Λ. Given
a fixed Λ, the inner loop updates λ and slack variables φ. Outer loop, on
the other hand, updates Λ and its penalty parameter β taking into account
the solutions from the inner loop. This procedure, by exerting more control
over the update of penalty parameters, is shown to be robust with enhanced
convergence properties compared to standard ADMM. Standard ADMM has,
in general, a current state of-the-art limitation of needing significant parameter
tuning. The main idea of two-level ADMM is to dualise and penalise slack
constraints, and apply a multi-block ADMM to solve Augmented Lagrangian
Relaxation (ALR) [149]. This method is shown to converge to an approximate
stationary solution even when the problem is non-convex [149].

Regarding the two-level ADMM, slack variables, (φ), are introduced into
the coupling constraints, and it is ensured that slack variables converge to zero,
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φ→ 0. Hence, the two-level ADMM is formulated as follows:

min
x,z,φ

∑
p∈P

(
fp(xp)

)
(4-64)

subject to:

x̃C
p − zC

p + φp = 0,∀ p ∈ P ; (4-65)

φp = 0 : (Λp), ∀ p ∈ P; (4-66)

xp ∈ Ξp,∀ p ∈ P ; (4-67)

Equations (4-65) -(4-66), being coupling constraints, when relaxed the
p-agent problems become separable by agent. Standard consensus ADMM is
formulated by relaxing these constraints, and constructing an augmented La-
grangian of the problem. Accordingly, the Lagrangian function is constructed
as follows:

Lρ,β(xp, z, λp, Λp) =
∑
p∈P

(
fp(xp) + λT

p .(x̃C
p − zC

p + φp) + ρ

2 . ∥ x̃C
p − zC

p + φp ∥22

+ ΛT
p .φp + β

2 . ∥ φp ∥2
2

)
; (4-68)

Given outer iteration counter t, at each inner iteration k primal variable
update is performed by:

xk+1
p = argminxp

(
fp(xp) + λk,T

p .xp + ρ

2 . ∥ x̃C
p − zk,C

p + φp[k] ∥2
2 +

ΛT
p .φp[t] + β

2 . ∥ φp[k] ∥2
2

)
,∀p ∈ P ; (4-69)

Dual update is performed by:

λk+1
p := λk

p + ρ.(x̃k+1,C
p − zk+1,C

p + φp[k]),∀p ∈ P; (4-70)

Slack parameter update is performed by:

φp[k + 1] = (−Λp[t]− λp[k]− ρ.(zp[k]− zp[k]C))/(β + ρ), ∀p ∈ P; (4-71)

Global variable update is performed by calculating the average of all
(x̃p)w related to zg:

zk+1
g :=

∑
G(p,w)=g

(
x̃k+1,C

p

)
w∑

G(p,w)=g 1
, ∀g ∈ Z; (4-72)



Chapter 4. Computational Techniques and Model Accuracy in DSO-TSO
Coordination Problems for Congestion and Voltage Management 110

Update for the dual of the slack variable is given as follows:

Λp[t + 1] = (Λp[t] + β.φp[k]), ∀p ∈ P; (4-73)

where ρ > 0 and β > 0 are penalty parameters.

Algorithm 1 Two-level Distributed ADMM Algorithm

0: Initialisation: ρ← ρ0, β ← 0.5.ρ0, t← 1
1: while outer stopping criteria not satisfied do
2: initialise λ[k], φ[k], Λ[t], k ← 1
3: while inner stopping criteria not satisfied do
4: Parallel run Algorithm 3 for each entities’ (subsystems) problems,

store optimal values for primal variables x̃C
p ,∀p ∈ P

5: Each subsystem p ∈ P sends x̃C
p to the central controller.

6: Slack parameter update: The central controller updates slack
parameters via (4-71).

7: Lagrange multiplier update: Each subsystem updates Lagrange
multipliers locally via (4-70).

8: Consensus update: The central controller updates zg,∀g ∈ Z
through (4-72).

9: The central controller sends zg to each subsystem p.
k ← k + 1

10: end while
11: Outer-level dual variable update: Each subsystem updates Lagrange

multipliers locally via (4-73).
12: Penalty parameter update: The central controller updates outer-level

penalty parameters.
β ← cβ.β; ρ← 2.β
t← t + 1

13: end while=0

4.4.6
Stopping Criteria for Two-Level ADMM Algorithm

In this work, the inner loop of the Two-Level ADMM stops if ∥ φ[k] −
φ[k − 1] ∥≤ ϵ where ϵ stands for an error tolerance level. The outer loop
of the Algorithm stops if the consensus terms match each other, i.e., ∥
z[k]− zC [k] + φ[k] ∥≤ ϵ.

4.4.7
Proposed Linearisation-Based Power Flow Algorithm

In order to enhance the solution in computational robustness and accu-
racy, compared to a standard SOCP which tends to be inaccurate in various
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Algorithm 2 Two-level Decentralised ADMM Algorithm

0: Initialisation: ρ← ρ0, β ← 0.5.ρ0, t← 1
1: while outer stopping criteria not satisfied do
2: initialise λ[k], φ[k], Λ[t], k ← 1
3: while inner stopping criteria not satisfied do
4: Parallel run Algorithm 3 for each entities’ (subsystems) problems,

store optimal values for primal variables x̃C
p ,∀p ∈ P

5: Each subsystem p ∈ P sends x̃C
p related to the linked zg to its

responsible leading subsystem.
6: Leading subsystem of zg p ∈ P sends x̃C

p to the respective leading
subsystem responsible for that variable.

7: Slack parameter update: The respective leading subsystem updates
slack parameters via (4-71).

8: Lagrange multiplier update: Each subsystem updates Lagrange
multipliers locally via (4-73).

9: Consensus update: The leading subsystem of zg updates zg,∀g ∈ Z
through (4-72).

10: The leading subsystem sends updated zg to respective neighbouring
subsystems p.
k ← k + 1

11: end while
12: Outer-level dual variable update: Each subsystem updates Lagrange

multipliers locally via (4-73).
13: Penalty parameter update: One leading subsystem updates outer-level

penalty parameters, and each leading subsystem sends to neighbouring
entities.
β ← cβ.β; ρ← 2.β
t← t + 1

14: end while=0

instances with high-system loading conditions resulting in larger deviations
from AC-feasible set-points. Also given the fact that for SOCP, the solvers are
still less mature than a linear programming solver, a linearisation of power
flow formulation procedure is applied as in [20]. As a result of this step, each
entity-related problem becomes a linear programming programming. The for-
mulation here is based on the circular formulation with the valid bounds of
voltage, i.e., 0 ≤ c2

n,m,t +s2
n,m,t ≤ (V n)2.(V m)2,∀ m ∈ Nn, ∀ n ∈ N , t ∈ T , The

algorithm is constructed in the following fashion: In the Initialisation step,
the algorithm initialises the iteration counter, ν, and, the initial set value for
discretisation-related variables α and α′. A master problem is constructed by
(4-74)–(4-78), which includes linearisation for circle approximation of conic
constraints. Therefore, each agent’s optimisation problem becomes a linear
programming problem. The pseudo-code of this decomposition procedure is
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presented in Algorithm 3.
Master problem solution:

Solve equation (4-59), which is augmented from (4-1); (4-74)

subject to:

Constraints: (4-9), (4-10), (4-12) – (4-16), (4-20) – (4-39),

(4-44) – (4-47), ; (4-75)

(V n)2 ≤ cn,n,t ≤ (V n)2, ∀ n ∈ Np, t ∈ T ; (4-76)

−
−α

(µ)
n,m,t.pn,m,t + (Sn,m)2√
(Sn,m)2 − α

(µ)
n,m,t

2
≤ qn,m,t ≤

−α
(µ)
n,m,t.pn,m,t + (Sn,m)2√
(Sn,m)2 − α

(µ)
n,m,t

2
,

∀ m ∈ Npn, n ∈ Np, t ∈ T , µ = 0, ..., ν; (4-77)

−
−α′

n,m,t
(µ).cn,m,t + (V n)2.(V m)2√

(V n)2.(V m)2 − α′
n,m,t

(µ)2
≤ sn,m,t ≤

−α′
n,m,t

(µ).cn,m,t + (V n)2.(V m)2

(V n)2.(V m)2 − α′
n,m,t

(µ)2 ,

∀ m ∈ Npn, n ∈ Np, t ∈ T , µ = 0, ..., ν; (4-78)

Algorithm 3 Decomposition Algorithm for Each Entity’s Problems

Initialisation:

Set µ← 0; Set ν ← 0;
Set αν

n,m,t ← αini
n,m,t, ∀ m ∈ Npn, n ∈ Np, t ∈ T ;

Set α′
n,m,t

ν ← α′
n,m,t

ini, ∀ m ∈ Npn, n ∈ Np, t ∈ T ;
Solve master problem given by (4-74)–(4-78), store its optimal so-
lution ((pn,m,t)ν , (qn,m,t)ν , cν

n,m,t, sν
n,m,t), and, objective function value

TotalCost(ν);

Iteration ν ≥ 1

Step 1: Run sub-problems. ∀ m ∈ Npn, n ∈ Np, t ∈ T , compute
projection of (p, q) on its respective circular region: ((p′)(ν−1), q(ν−1)),
where (p′2)(ν−1) = S

2 − (q2)(ν−1)). Similarly compute projection
of (c, s) on its respective circle: (c′)(ν−1), s(ν−1)) where (c′2)(ν−1) =
V

2
n.V

2
m−(s2)(ν−1). Set α(ν) ← (p′)(ν−1). Set (α′)(ν) ← (c′)(ν−1). Store

α(ν), α′(ν);
Step 2: If Gap ≤ ϵ, then stop. Otherwise, go to Step 3;
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Step 3: ∀ µ = 1, ..., ν, solve master problem consisting of (4-74)–
(4-78). Store its optimal solution ((pn,m,t)(ν), (qn,m,t)(ν), c

(ν)
n,m,t, s

(ν)
n,m,t),

and, objective function value, TotalCost(ν). Set ν ← ν + 1. Go to
Step 1.

4.5
Numerical Experiments

In order to demonstrate the computational capability of the proposed
approach, in this section, a comparison amongst a centralised solution to
the DSO-TSO joint problem as a benchmark, a distributed approach based
on a standard ADMM as well as a two-level ADMM with different penalty
parameters are provided.

4.5.1
Motivating Example

This motivating example is based on a 7-bus system consisting of 3
generators and 4 loads as depicted in Fig. 4.4. Data for generators and branches
are provided in Table 4.1. In order to illustrate the key aspects aspects of
the proposal, the analysis is performed on one-hour, inelastic demand and by
considering a DC-power flow formulation without considering any flexibility in
the system.

Two cases studied, Case 1 and Case 2, are composed of the partition of
the 7-bus system into two and three sub-systems, respectively. Table 4.2 and
Fig. 4.4 show what this partition entails. Case 1 considers that the buses B5
and B4 are linked with a branch with the same characteristics as, e.g., the line
L5. Standard ADMM and 2-level ADMM are applied under different choices
of the penalty parameter ρ > 0 with error tolerance of ϵ = 10−4. Fig. 4.5 shows
the convergence rate of Case 1, and Table 4.3 presents both Case 1 and Case
2 with different values of ρ. The results indicate that the choice of ρ plays a
significant role in the convergence rate, a value of 8 giving the best result in
Case 1. The same ρ, such as of value 8, can result in different convergence
speed in different cases. A poor choice of ρ can lead to non-convergence, as
observed in Case 2 at a value of 2. These observations support earlier findings,
e.g., in [144].

Table 4.3 also demonstrates that the number of blocks, i.e., decision
entities, for the ADMM procedure impacts the convergence results. 3-block
ADMM, in this study Case 2 with 3 subsystems, does not have convergence
guarantees, whereas Case 1 has such guarantees. Despite the fact that both
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cases converge, Case 1 requires much less number of iterations than Case 2.
Number of global variables also plays a role in the convergence performance.
Case 1 has 3 global variables and Case 2 has 6 global variables, and accordingly
it has less number of data exchange and iterations to reach to a consensus.

The convergence performance of a 2-level ADMM against a standard
ADMM is reported in Table 4.3. Two-level ADMM number of iterations are
represented as total iterations for comparability, since these are repeated after
the outer loop run. In general, computational time is impacted by number of
iterations needed, which is relatively high, e.g., for Case 2 with 3 subsystems
with ρ = 2. The two-level ADMM depicts a superior performance, especially in
Case 2 where standard ADMM needs a significantly larger number of iterations
even when the penalty parameter is relatively well-tuned, e.g. ρ = 100 in
Case 2. Noted is also that the the outer-level iterations of two-level ADMM
do not need a significant computational effort, as they principally compute
parameters for next iterations. The solution quality is also preserved with
a moderate error tolerance level of ϵ = 10−4, towards which the number of
iterations can be sensitive to. Fig. 4.6 illustrates that, albeit the fact that both
for standard ADMM and two-level ADMM the same initialisation is applied
with a neutral assignment of zero to each consensus variables, 2-level ADMM
quickly reaches to a tighter optimality gap after 6 iterations to below 10−2

accuracy. ADMM needs 11 iterations to reach such a level. Two-level ADMM
shows larger fluctuations or jumps over the subsequent iterations. It is most
likely due to the fact that the outer loop in the two-level ADMM exerts control
on the inner loop, and provides feedback which becomes of essence when the
subsequent iterations do not improve. This control and feedback results in
jumps, which reach to a more stable situation until the next feedback arrives.
Standard ADMM, lacking such a manager, remains stable for possibly a long
time without any improvement.

Moreover, Table 4.3 also reports two-level ADMM under a decentralised
communication strategy. We note that the proposed decentralised ADMM
would not reduce the number of iterations needed for the ADMM compu-
tation, since the exchanged parameter values would be the same amongst the
subsystems. Reduction of communication bottleneck may translate into com-
putational savings. Although some time savings have been reported compared
to standard distributed two-level ADMM, the benefits can potentially be more
pronounced for large system related computation.

In terms of coordination aspects, looking into the Case 2 with 3 sub-
systems, subsystem S2 is reliant on the interface flows from the other two
systems to be able to serve the demand within its jurisdiction of 300 MW
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in total whereas it has a total generation capacity of 200 MW. Particularly,
with the given demand and generation parameters, S2 would ideally receive
an active power flow of 121.88 MW from S3. In case the actions of these
two subsystems are uncoordinated, in a situation of congestion, e.g., due to
a surge in demand in S3, or alternatively weather conditions causing a lower-
than-anticipated renewable generation by G3 S2 may not be able to serve the
demand within its system. Similarly, S1 is a net power provider for S2 through
their interface. Hence, uncoordinated operations of interconnected systems can
cause high system costs as a whole due to emergency actions which can be re-
quired. Moreover, an effective coordination can enhance access to lower-cost
generation from adjacent subsystems, giving rise to efficiency.

Figure 4.4: 7-bus system with 3 sub-systems.

Table 4.1: 7-Bus system branch data.

Lines From To x FMax Demand Demand
[p.u.] [MW] node [MW]

L1 1 2 0.6 150 D1 150
L2 1 3 0.6 150 D2 150
L3 2 4 0.1 150 D3 10
L4 3 5 0.1 150 D4 10
L5 4 7 0.1 150
L6 1 6 0.1 150
L7 5 7 0.1 150
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Table 4.2: 7-Bus system 2-Case studies.

Case Nb. Subsystems Tie-lines Nb. global var.
1 S1=1,6 L1 and L2 3

S2 = 2, 3, 4, 5
2 S1=1,6 L1 and L2 6

S2=2,3,4,5 L5 and L7
S3=7

Table 4.3: 7-Bus system computational results.

Case 1 Comput. Nb. Nb. outer loop Convergence
2 sub-systems time [s.] iterat. iterat. yes/no
ρ = 2
Standard ADMM 22.804 284 - yes
2-level ADMM 6.318 50 10 yes
2-level ADMM decentral 6.060 50 10 yes
ρ = 8
Standard ADMM 11.835 49 - yes
2-level ADMM 5.272 40 7 yes
2-level ADMM decentral 5.159 40 7 yes
ρ = 100
Standard ADMM 18.510 234 - yes
2-level ADMM 5.895 48 8 yes
2-level ADMM decentral 5.676 48 8 yes
Case 2
3 sub-systems
ρ = 2
Standard ADMM 102.628 1000 - no
2-level ADMM 102.228 917 6 yes
2-level ADMM decentral 93.642 917 6 yes
ρ = 8
Standard ADMM 118.961 978 - yes
2-level ADMM 61.216 416 6 yes
2-level ADMM decentral 51.777 416 6 yes
ρ = 100
Standard ADMM 49.448 398 - yes
2-level ADMM 38.481 221 5 yes
2-level ADMM decentral 29.446 221 5 yes

Figure 4.5: Case 1 with 2 sub-systems: Optimality gap per iteration for
standard ADMM results with different values of ρ.
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Figure 4.6: Case 1 with 2 sub-systems: Optimality gap per iteration standard
ADMM vs. 2-level ADMM results with ρ = 8.

4.5.2
Case Study on IEEE 118-bus system connected with two 33-bus systems

In this Section, a two-level network with a high-voltage (HV) transmis-
sion and medium-voltage (MV) distribution level networks are considered. At
the HV level, a modified IEEE 118-bus test transmission system, which is
based on the American Electric Power System in the U.S. Midwest, is studied
to highlight congestion and voltage aspects with high penetration of renewable
generation, in which wind and solar farms of 4.264 GW of rated power is con-
sidered. This system is comprised of 186 transmission lines, 28 conventional of
which 9 hydro power plant as well as 26 weather-dependent generation - wind
and solar - facilities.

At the MV level, two radial distribution systems based on a modified 33-
bus test system in order to be able to co-operate via tie-lines jointly with the
118-bus system [155], with an identical topology. These distribution systems
are connected to the interface nodes 4 and 8 of the transmission network,
respectively. The two distribution networks are connected through the nodes
144 and 178. We note that interconnection amongst DSOs may not be common
in the current power systems, though is observed for instance at the border
regions of the Netherlands and Belgium. In addition, in Europe not only
cross-border interconnections amongst transmission networks are stimulated,
but also such interconnection cross-border possibilities at distribution level
are explored [156]. The distribution systems in this Case Study operate as
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’active distribution systems’ in the sense that they are capable of providing
bottom-up flexibility with their aggregated resources towards the transmission
system. Conversely, transmission system is also able to transfer or consume
power through the interface with the distribution systems. The tie-lines of each
system can host 55 MW of active power between transmission and distribution
and 25 MW between the two distribution networks. Two generators are placed
at nodes 140 and 151 for the first distribution network and 173 and 184 of the
second distribution network, for which the numbering is based on the total
system of 184 nodes. Each of the first generation facility is considered to be
weather-based with an aggregated rated capacity of 45 MW. The conventional
generation facilities are with a capacity of 30 MW each and a marginal costs
for active power of 9.33 EUR-106.24 EUR per MWh depending on the unit
type. Marginal costs for all weather-based generation in the system is assumed
to be zero. Marginal costs for reactive power are assumed to be 20% of those
for active power, which is a simplification. In general, reactive power markets
exist in some jurisdictions, such as the United Kingdom, which can be used as
a benchmark for marginal price of reactive power.

Four of aggregated energy storage systems with homogeneous technical
specifications, each of which of a total of 30 MWh capacity, 6 MW of rated
power, are placed at nodes 120, 121 and 140 related to the first distribution
network (S2) as well as node 173 connected to the second distribution network
(S3). The average charge and discharge efficiencies are assumed to be at 86.6%
and 97.2%, with an operational cost of 0.1 EUR MWh. respectively, as in
[157]. The maximum and minimum state-of-charge (SOC) is set at 80% and
20% of the capacity, respectively.

This interconnected systems with one transmission and two distribution
subsystems are considered to accommodate an hourly peak demand of 5.742
GW.

24-hours of operations of the respective systems with varying renewable
output as well as demand are modelled, as in Fig. 4.7. Parallel with [152],
voltage limits at all nodes are considered to be 0.95 p.u. and 1.05 p.u. 1

Parallel with the implementation of a two-level ADMM in [149], the outer
penalty parameter β is initialised at 1000.0, and its multiplier cβ is chosen as
6.0. In order to illustrate sensitivity to the choice of the parameters, the results
under different choice of constant and variable penalty parameters at each
iteration are also presented. An upper bound of 1.0e8 is considered in order to
avoid numerical failures for the solver due to potentially large penalties and

1All simulations are run on an Intel® Core i7-8550U CPU, 1.99 GHz with 8 GB of RAM
machine under JuMP® and CPLEX® solver.
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dual variables. Outer level dual variables are bounded by ±1.0e8. Both primal
and dual variables are initialised at 0.0 as a neutral starting point.

Tolerance parameter for the stopping criteria is set at ϵ = 10−5, unless
otherwise indicated.

4.5.2.1
Simplified case with two-subsystems and three-subsystems

Firstly, a simplified version of the full Case is presented in order to gain
some insights on computational aspects without complexities of time-coupling,
flexibility provision and power flow accuracy. A DC power flow is implemented
over an hour of operations. In order to run a two-subsystem Case, the second
DSO related to sub-system S3 is removed.

Table 4.4 shows the computational results for two subsystems consisting
of IEEE 118-bus transmission system connected with one 33-bus distribution
system. Standard ADMM does not converge after 1,000 iterations, which
requires a significant computational effort. Two-level ADMM, on the other
hand, converges within less than one fifth of number of iterations, saving more
than 80% of computational resources. A decentralised computing of two-level
ADMM, however, did not lead to any savings but rather to a slight increase of
computational time in this relatively simple study. Table 4.5 demonstrates the
computational performance of the algorithms for three subsystems consisting
of IEEE 118-bus transmission system connected with two 33-bus distribution
systems in a similar settings as in the earlier two-subsystem case. As in the
previous case, Standard ADMM does not converge after 1,000 iterations Two-
level ADMM reaches to a convergence after about 10% of the iterations for
standard ADMM, and within 56% of the time. A decentralised computing of
two-level ADMM depicts some gradual time savings, by 3.1%.

Table 4.4: IEEE-118-bus transmission system coupled with one IEEE-33
bus distribution system; DC power flow 1-hour without flexible resources
computational results for ρ = 8.

Case 118 bus + 1x 33 bus Comput. Nb. Nb. outer loop Convergence
2 sub-systems time [s.] iterat. iterat. yes/no
Standard ADMM 147.439 1000 - no
2-level ADMM 26.440 197 14 yes
2-level ADMM decentral 26.551 197 14 yes
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Table 4.5: IEEE-118-bus transmission system coupled with two IEEE-33
bus distribution systems; DC power flow 1-hour without flexible resources
computational results for ρ = 8.

Case 118 bus + 2x 33 bus Comput. Nb. Nb. outer loop Convergence
3 sub-systems time [s.] iterat. iterat. yes/no
Standard ADMM 162.198 1000 - no
2-level ADMM 90.618 105 40 yes
2-level ADMM decentral 87.799 105 40 yes

4.5.2.2
Full case with DSO-TSO three-subsystems with flexibility resources and
AC power flow, 24-hours operations

This sub-section reports the full implementation results of the proposal
with a full model involving flexible resources mainly at the distribution level,
AC power flow and 24-hours of operations. The model, in its centralised
formulation, has 71,376 variables and 123,308 constraints (including 36,768
non-negativity constraints for variable definitions).

Fig. 4.8 and Fig. 4.9 report the active and reactive power flows at interface
nodes. Fig. 4.10 shows how the state-of-charge (SOC) of the storage system,
located at node 120 connected to S2, evolves over time. Fig. 4.11 demonstrates
the evolution of the SOC for the storage system 2 per hour, which is very similar
to storage system 3 and 4. The latter are not explicitly plotted due to similar
behaviour. Because of the assumption that renewable generation and demand
pattern is homogeneous at every sub-system, and hence not depicting other
weather conditions or demand, these three storage facilities show a similar
change of SOC, though with slightly varying quantities.

It is observed that there are differences in terms of quantities of active
and reactive power injected or withdrawn at each interface node, despite
two homogeneous active distribution systems, first of which being S2 and
second being S3, coupled to the transmission systems, with a difference of base
demand, S2 with 6.3 MW and S3 with 4.2 MW, and the number of storage
facilities. S2 operates three storage units at nodes 120, 121 and 140, whereas
S3 operates 1 storage unit at node 173.

Following the demand and generation structure given in Fig. 4.7, night
hours of 0h − 6h, with low renewable generation coupled with low demand
result in the highest flow of reactive power between S1, representing the TSO,
and S2.

High renewable generation hours, 10h − 15h, lead to relatively large
quantities of especially active power flow from S1, TSO, to both DSOs’s
subsystems, S2 and S3. It is because of the fact that TSO, lacking any
storage in its network, makes use of energy storage systems located at DSO
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nodes. Another observation is that during these hours the interface flows, both
active and to a large extent reactive power, is steady owing to the impact of
storage which creates a bridge between low and high generation hours. We
note that albeit the fact that a tight formulation is chosen based on state-of-
the-art techniques in the literature [139] to avoid binaries for capturing not
simultaneous charging and discharging, the results showed that this could not
be entirely prevented. In fact, in hour 22 characterised by low generation and
declining demand, for storage 1 this was the case which is reflected in the SOC
by netting charging power of 1.69 MW and discharging power of 2.73 MW for
the respective hour. For the same hour and with regard to storage 2, charging
power of 2.77 MW and discharging power of 2.46 MW were netted.

On the other hand, peak-load evening hours, 16h − 19h, and thereafter
with relatively low renewable generation, reactive power injections and with-
drawals demonstrate largest fluctuations at every interface node. These hours
are characterised by a higher need of voltage control especially at the trans-
mission level, which is at least partly provided by active distribution networks.

Looking into the interaction between the two DSOs, one can observe that
the active power flow direction is mainly from S3 into S2 especially during night
hours supporting for low generation to serve a larger demand at S2.

Moreover, capacitors are placed at every node with relatively high
marginal costs in order to illustrate the capability of renewable and storage
facilities for reactive power support. It is observed that capacitors are hardly
activated in any of the hours. Therefore, the bottom-up flexibility is capable to
help transmission system for voltage management purposes without having the
need to rely on conventional means for voltage control, such as shunt capacitors
or capacitor banks.

Overall, the flows at interfaces are sizeable, and during some hours they
are towards their limits, stipulating that flexible distribution systems can
play a significant role in active power congestion and voltage management
at the TSO as well as the adjacent DSOs, by optimising the power flows at
the interface of the respective networks. This highlights the importance of
power flow modelling so that the limits and flexibility of the power system
can more efficiently be exploited, in particular at the interface. Furthermore,
in this setting, aggregated energy storage facilities in distribution networks is
observed to act as a key player for coordination.

Table 4.6 summarises the computational results of the described numer-
ical experiments. Standard ADMM couple with a standard SOCP is provided
as a benchmark. The proposed algorithms-related results, namely Algorithm
1 with a distributed two-level ADMM with a sequential-linearisation based
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circle approximation algorithm given by Algorithm 1, as well as the same but
a decentralised one, Algorithm 2 are provided. Optimality gap is reported as
in [150], defined such that Opt.Gap = |T otalCostOptimal−T otalCostAlgorithm|

T otalCostAlgorithm
, where

TotalCostOptimal is the optimal objective value of the centralised solution and
the TotalCostAlgorithm is the total cost obtained out of the algorithm.

A time limit of 10, 800 seconds is set for all cases. Implementation is
repeated with different penalty parameters, ρ = 8, 12, 100, choice of which
did hardly make any impact on the outcome. As such, the results for ρ = 8
is presented in the Table 4.6, which is comparable with outcomes with other
choices of ρ.

Standard ADMM with SOCP remained divergent, and was able to run
152 iterations within the time limits. The bounds hardly improved over the
iterations, which conclude with a high optimality gap of 41.79%, almost the
same level as its start. Two-level ADMM with sequentially linearised power
flows, on the other hand, resulted in a tighter optimality gap, albeit not
within the pre-set tolerance level of 10−5, from engineering point of view
may be in an acceptable range depending on the implementation, such as
for a large distributed power flow case study in [144]. Furthermore, two-
level ADMM with a decentralised data communication structure with again
the same linearisation-based power flow embedded resulted in a possibility
of iterating 5.2% more within the given time limits, leading to a gradual
improvement of optimality gap by 0.02 percentage points. Two-level distributed
algorithm requires a total of data exchange of 144 variables per iteration,
being 50-50% primal and dual both for inner and outer iterations, whereas
decentralised algorithm needs an exchange of 96 variables with the same
composition, saving one-third of data communication. The consensus variables
chosen to be exchanged are cn,m, ∀n ∈ Np, m ∈ N∞

p , p ∈ P , and sn,m,∀n ∈
Np, m ∈ N∞

p , p ∈ P in the implementation, which do not reveal any sensitive
information about the content of the data.
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Figure 4.7: Total demand and renewable generation per hour in MW.

Figure 4.8: Active power flow P per hour at the interface nodes between
subsystems in MW.
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Figure 4.9: Reactive power flow Q per hour at the interface nodes between
subsystems in MVAr.

Figure 4.10: SOC [MWh] storage system-1 per hour at the distribution systems.

Figure 4.11: SOC [MWh] storage system-2 per hour at the distribution systems,
representative also for storage system-3 and 4.
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Table 4.6: IEEE-118-bus transmission system coupled with two 33-bus dis-
tribution systems; AC power flow 24-h with flexible resources computational
results:’Two-level ADMM with Linearisation-Algorithm 1 & 2 vs. ’Standard
ADMM with Standard SOCP’

Case 118 bus + 2x 33 bus Comput. Nb. Nb. outer loop Optimality
3 sub-systems time [s.] iterat. iterat. gap
Standard ADMM & SOCP 10,800 152 - 41.79%
2-level ADMM Algo. 1 10,800 231 5 8.78%
2-level ADMM decentral Algo. 2 10,800 243 6 8.76%

4.5.2.3
Value of DSO-TSO coordination

To illustrate the no coordination case, constant flows are assumed be-
tween the subsystems - S1-S2 of 30 MW, S1-S3 of 55 MW and S2-S3 of -
10MW - based on bilateral agreements. Accordingly, each subsystem ignores
the state of one another. This results in a curtailment of 108.51 MW of renew-
able generation per hour in the overall system as well as total system costs of
$ 515,911.42. By incorporating coordination of DSO-TSO systems according
to the presented framework, the renewable generation curtailment reduces to
82.86 MW per hour, representing a decrease by 23.63%. Total system costs
decrease to $ 367,402.32, corresponding to a drop of 28.79%.



5
Computational Techniques and Model Accuracy in Energy
and Reserve Pricing for Power Systems with Non-Convex
Costs

This Chapter reuses the publication, [Paper C] Martin, N. C., &
Fanzeres, B. (2023). Stochastic risk-averse energy and reserve scheduling and
pricing schemes with non-convexities and revenue caps. Electric Power Systems
Research, 225, 109858.[Paper A], which is herewith referenced and cited as
[29]. A related publication supporting the conclusions is [Paper D] Martin,
N. C., & Fanzeres, B. (2023, September). A Stochastic Risk-Averse Model to
Price Energy in Pool-Based Electricity Markets with Non-Convex Costs and
Revenue Caps. In 2023 International Conference on Smart Energy Systems
and Technologies (SEST) (pp. 1-6). IEEE. The latter is referenced as [18].

In general, it is assumed throughout the Chapter that the market clearing
results may not be binding for market participants, such that they may have
an incentive to deviate if they can not recover their costs.

A particular aspect of the structure of electricity production systems is
that planning, operation, and market clearing are intrinsically linked [158].
More precisely, electricity market clearing is derived from the solution of a
welfare-maximising scheduling and operation of the system assets to meet
demand. In general, the models applied to this end are suitably formulated as
Mixed-Integer Linear Programming (MILP) problems. In this context, binary
variables capture the generators’ operating characteristics, such as start-up
and no-load costs [159]. For a MILP problem, however, the feasibility space
is non-convex, which hampers the derivation of marginal prices as Lagrange
multipliers of demand and supply balance equations. Fixing binaries in the
MILP problem or relaxing the integrality constraints to obtain marginal prices
are widely applied. It is at a cost, since for some instances, it might be
preferable for generators to deviate from the dispatch decisions of the system
operator, as otherwise their overall (non-convex) costs may not be entirely
covered by delivering energy at the marginal price provided by the market
operator [159]. Debatable out-of-market mechanisms, such as uplift schemes
as side payments, are used in several markets around the globe in order to
properly remunerate generators due to their non-convex cost structure. These
payments are intended to capture the opportunity costs for generators when
the dispatch decisions are followed. Uplift payments, however, may distort price
signals for entry into the market, as they are discriminatory among players and
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only known ex-post [160].
Accordingly, the convex hull pricing approach proposed in technical

literature revolves around an uplift payment minimising mechanism, which
determines prices through the Lagrangian dual of the original MILP problem.
This approach is, however, considered to be computationally expensive while
giving limited intuition into the resulting prices [161]. On the other hand, the
European Union has recently intensely debated on imposing revenue caps to
limit windfall profits of generation companies by virtue of abnormal market
and system conditions [162]. Because of a surge in fuel prices, particular high-
cost gas generators become price-setters, handing over high electricity prices
to consumers, while the actual fuel costs of low-cost technologies are hardly
affected. In this context, revenue caps are out-of-market mechanisms intending
to reallocate windfall profits from generators to consumers.

Most electricity markets follow a day-ahead deterministic clearing process
that entails decisions with respect to the commitments of generators along with
the scheduling of energy and reserves. These commitments are determined
following a contingency analysis to prevent extreme events, such as blackouts.
Moreover, reserves provide an excess capacity allocation, on top of the expected
load, and a prompt availability mechanism against adverse operating events,
e.g., loss of energy or errors in net demand forecasting. Co-optimisation of
energy and reserves can lower the cost of providing energy, as such a mechanism
sets the price for energy and reserve simultaneously and determines the optimal
resource allocation while ensuring security in supply [33]. U.S. markets are
examples of such a market setup. Energy price reflects the marginal cost of
supplying an incremental amount of load, at the same time meeting the reserve
requirements. The reserve price, on the other hand, refers to the marginal cost
of an additional unit of providing reserve and the opportunity cost of not
committing to energy delivery.

Such a deterministic market clearing mechanism has been increasingly
challenged by stochastic power output from renewable sources and proactive
demand. In fact, inconsistent outcomes have been observed between scheduling
and pricing under the deterministic setting when used as a proxy for a
stochastic reality [28]. Moreover, high system balancing-costs are incurred,
triggered by large forecast errors for renewable generation sources [163].
Stochastic market-clearing processes, nevertheless, provide a better-informed
[164] – if not an ‘ideal’ set-up to accommodate renewables and schedule for
reserves [122] – sequential decision-making framework for the system operator
[31].

From a procedural viewpoint, in the first stage of these models, the
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operator determines the day-ahead commitments, nominal operative points
along with reserve allocations, and demand response resources on the basis of
a renewable production forecast. In the second stage, the operator makes use
of the resources allocated at the day-ahead (first) stage to adjust the system’s
operative state in order to meet an updated net demand forecast close to real-
time operation. In addition, system operators are concerned with the risk of
not being able to provide the energy demanded by customers. In case high
renewable generation uncertainty is coupled with outages, this risk amplifies,
motivating the consideration of risk aversion in the market-clearing process
[165, 166].

To overcome these challenges, in this work, a novel market-clearing
process is designed that co-optimises energy and reserve in a stochastic risk-
averse framework enabling robust decision-making for system operators, and
endogenously ensures cost recovery for generation companies. The process is
built upon a primal-dual formulation with the objective of mitigating the
system operator’s uplift payments by minimising the optimality gap between
the MILP and the Lagrangian dual of the corresponding linear program
when integrality constraints are relaxed. Accordingly, the rationale of such
a market clearance is to minimally diverge from the welfare-maximising
economic-dispatch solution while ensuring cost recovery for market agents
taking into account their non-convex cost structure endogenously to the
clearing procedure [116]. We highlight that a similar approach has been studied
in technical literature in [167] within a deterministic setting, and in [116]
considering a stochastic clearing procedure, but both without co-optimising
and pricing energy and reserves and explicitly characterising the system
operator’s aversion to risk. Finally, we highlight that the resulting formulation
for the market-clearing process falls into the class of a Mixed Integer Bi-
Linear Programming (MIBLP) problem, challenging to be handled efficiently
using standard optimisation algorithms or off-the-shelf solvers. Therefore, to
enhance the computational capability in solving the proposed market-clearing
procedure, in this work, a hybrid binary expansion and McCormick envelope-
based algorithm is proposed. The efficiency of the algorithm is demonstrated
in a large system case study based on the IEEE-118 bus test system.

5.0.1
Objectives and Contributions to the Literature

The contributions of this work are principally linked to the following
strands of literature: i) reflecting uncertainties in electricity market design; ii)
pricing and recovering non-convex cost structures; and iii) handling bi-linear
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optimisation problems. These literature strands will be outlined in the next
sub-sections.

5.0.1.1
Reflecting Uncertainties into Electricity Market Design

Three principal design options are discussed in the technical literature
for taking into account the uncertainty in sequential electricity markets,
i.e. day-ahead, intra-day, and balancing markets, as described in [164, 168].
Deterministic design with new products – e.g., flexible ramp and operating
residual demand curves – incorporates flexibility taking into account implicitly
the impact of uncertainty; represented by [169, 170, 28]. Robust design which
ensures feasibility for outcomes within any given uncertainty realisation within
an a-priori-defined uncertainty set; represented by [171, 31, 165]. Stochastic
design models day-ahead and real-time markets as a two-stage model where
the dispatch decisions are taken prior to day-ahead and in anticipation of the
real-time uncertain realisation. A principal advantage of a stochastic market-
clearing procedure is in terms of overall operative costs, which tend to be lower
than, e.g., in a deterministic framework with operational reserves [164].

5.0.1.2
Pricing and Recovering Non-Convex Cost Structures

Energy prices supposedly provide incentives and signals for profit-
maximising generators to adhere to the commitment and dispatch decisions
of the system operator [159]. Non-convexities present in the cost structure due
to units’ operating features, however, imply that the optimal choice for the
generator may be to deviate from these dispatch decisions, as otherwise its
costs recovery, e.g., start-up and no-load costs, may not be fully covered by
selling energy at marginal prices. For instance, a fast-ramping unit dispatched
at its minimum operation limit may not receive sufficient income to cover its
non-convex start-up costs, when marginal prices are the sole source of pay-
ment. Additionally, from an economic perspective, equilibria in markets with
non-convexities may not exist [172]. Out-of-market mechanisms, such as up-
lift schemes as side-payments, are used in several markets around the globe,
e.g., European and US markets, in order to appropriately remunerate gener-
ation companies and remove incentives to deviate from the central dispatch
decisions. These payments would capture the opportunity cost, as the dif-
ference between the profit-maximising solution for the generation company,
i.e., a self-scheduling solution, and the total revenue obtained from the social-
welfare-maximising solution of the system operator. However, uplift payments
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may distort price signals for entry into the market as they are only evaluated
and disclosed ex-post to the operation.

For transparency reasons, a widely studied approach in the technical
literature has an objective to mitigate uplift payments while maintaining a
reasonable-costly operation. For instance, in the so-called Convex Hull (CH)
method [161], prices are evaluated based on the gradient of the estimated
convex envelope obtained, e.g., using Lagrangian Relaxation. The convex hull
prices are then those which maximise the mixed-integer and non-smooth
Lagrangian dual problem. More specifically, a convex hull is constructed
by replacing the cost function of each generation company with its convex
envelope and the constraint set of the problem by its convex hull. Although
various methods - e.g., sub-gradient, bundle, and cutting plane - have been
studied in the technical literature to handle the challenges in computing prices
based on the CH method, most of them do not guarantee global optimal
solution in polynomial time [159], thus the CH method is referred to be, in
general, computationally prohibitive [173]. Alternatively, A different approach
has been discussed in [167] that tackles the cost-recovery issue directly and
explicitly. More specifically, the objective is to commit and dispatch the system
assets as close as possible to its resulting pricing solutions. This is achieved
by relaxing the integrality conditions of the binary unit commitment variables
with their continuous analogs and obtaining the duality gap between the primal
problem and the dual, relaxed problem, subject to the combination of both
the primal and dual problem constraints. In order to ensure cost recovery,
additional constraints are added to enforce for each generation company a
market revenue sufficient to cover its non-convex cost structure. In this work,
we follow this latter approach to design the proposed market-clearing process.

5.0.1.3
Linearisation of Bi-linear Terms

Since cost recovery for generators is imposed in the commitment and
scheduling problem, a non-convex, bi-linear term emerges in the market-
clearing formulation. Such optimisation problems with bi-linear terms along
with mixed integer variables may not be efficiently solved by commercial solvers
or standard optimisation algorithms [34]. Furthermore, such problems are typ-
ically NP-hard [35]. Accordingly, bi-linear terms are commonly linearised for
tractability purposes. Binary expansion is amongst the most common methods
applied in the technical literature [174]. Its precision is highly impacted by the
step size chosen by the decision-maker, and, albeit a smaller step size implies
a higher precision, it can be computationally prohibitive and configures only
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an approximation to the original bi-linear formulation [116]. Recently, several
hybridisations and combinations of relaxation procedures, such as McCormick
envelopes [111] within the binary expansion process have been studied aiming
at enhancing the computational capability and solution quality of bi-linear op-
timisation problems [175, 114]. In Section 5.2, we leverage this hybridisation
technique to construct an efficient solution approach to the proposed bi-linear
marker-clearing procedure.

5.0.1.4
Objectives and Contributions

Despite the relevance of the aforementioned technical literature, earlier
works studying efficient pricing mechanisms in markets with participants
with non-convex cost structures, in general, focus on deterministic or risk-
neutral frameworks, and omit the reserve scheduling and compensation. In
this work, we extend this literature by exploring the impact of a risk-averse
structure on the market-clearing process, with a particular focus on the trade-
off between expected operation cost and the risk of short-term demand-supply
imbalances, inferring how to price energy and reserves guaranteeing cost
recovery for generation companies. From a computational viewpoint, aiming
at enhancing the computational capability to handle the proposed bi-linear
market-clearing process, a hybrid method combining McCormick envelopes
and binary expansion is designed.

The intention of the paper is to be as general as possible, and it
arguably selects desirable design aspects, such as co-optimisation of energy
with reserves as well as some issues raised in practice, such as risk-averse
decision-making process of system operators, and, windfall profits and cost
recovery of generators. In terms of market-design, the United Kingdom (UK)
electricity market design is the closest real-world application, where revenue
caps and a nodal market has been in discussion and under consideration.

In summary, the contributions of this work are fourfold:

1. To extend [116, 167, 31] to a multi-commodity environment and their
endogenous clearance of reserves and scale-up the numerical analysis to
larger power networks to gain insights on realistic systems.

2. To consider a risk aversion profile to the market operator for meeting
demand and supply in an uncertain renewable power generation envi-
ronment, mimicking the daily decision process of system operators in
practice.
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3. To compare the market outcomes from the perspective of provision of
cost recovery guarantee for the generation companies under the following
schemes: i) at the day-ahead stage including energy and reserves; ii) in
expectation; iii) per scenario; iv) uplift covering all the shortages with
regard to energy; and v) revenue cap. The latter is of practical interest
in view of market design debate, especially in the European Union and
the United Kingdom.

4. To design an efficient procedure to tackle the bi-linear terms based on a
hybrid approach combining McCormick envelops with binary expansion
in order to improve the computational compatibility to handle the
market-clearing process. The proposed hybrid McCormick and binary
expansion procedure is novel, at least in power system applications.

5.1
Stochastic Energy and Reserve Market Clearing Model with Cost Recov-
ery

One of the main objectives of this work is to propose a risk-averse market-
clearing process that efficiently balances reasonable-costly energy and reserves
scheduling to meet demand with an endogenous cost-recovery guarantee for
generation companies, thus explicitly mitigating the side payments in the
market. For this purpose, we leverage primal-dual interdependence and identify
a least-duality gap solution with (non-convex) cost recovery. In this section, we
carefully describe the proposed market-clearing process. Firstly, Section 5.1.1
presents the (primal) formulation that identifies the least-cost commitment
and energy and reserves scheduling under uncertainty. This primal model
formulation is very close to how it is implemented by system operators in
their daily activities. Then, Section 5.1.2 indicates the process to formulate the
dual problem of the non-convex problem presented in Section 5.1.1. Further
on, Section 5.1.3 discusses different cost-recovery structures for generation
companies. Finally, Section 5.1.4 resumes the proposed market-clearing process
formulated as a MIBLP problem.

5.1.1
Primal Formulation

It is assumed that all generators are price-takers in this study. In addition,
a linear cost structure is assumed. Similar to most stochastic market-clearing
formulations studied in the technical literature, the presented primal model
is stated as a two-stage mixed-integer linear program. Structurally, the first
stage defines the day-ahead commitment of each conventional unit and energy
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and reserves scheduling to meet demand, complying with different technical
constraints, and the second stage is in the view of the real-time energy
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production and delivery [31, 32].
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wDA
k,t

−
∑

m∈Nn

Bm,n

(
θDA

n,t − θDA
m,t

)
= 0, :

(
λDA

n,t

)
∀ n ∈ N , t ∈ T ; (5-4)

− F n,m ≤ Bn,m

(
θDA

n,t − θDA
m,t

)
≤ F n,m,

:
(
ηDAmin

n,m,t , ηDAmax
n,m,t

)
∀ m ∈ Nn, n ∈ N , t ∈ T ;

(5-5)

λSU
i,t ⩾ (ui,t − ui,0).KSU

i , : (µSU
i,t

)
∀ i ∈ J , t = 1; (5-6)

λSD
i,t ⩾ (ui,0 − ui,t).KSD

i , : (µSD
i,t

)
∀ i ∈ J , t = 1; (5-7)

λSU
i,t ⩾ (ui,t − ui,t−1).KSU

i , : (µSU
i,t

)
∀ i ∈ J , t ∈ T \ {1}; (5-8)

λSD
i,t ⩾ (ui,t−1 − ui,t).KSD

i , : (µSD
i,t

)
∀ i ∈ J , t ∈ T \ {1}; (5-9)

θDA
n=ref,t = 0, :

(
γt

)
∀ t ∈ T ; (5-10)

δ+
i,s,t ≤ rU

i,t, :
(
σUmax

i,s,t

)
∀ i ∈ J , s ∈ S, t ∈ T ; (5-11)

δ-
i,s,t ≤ rD

i,t, :
(
σDmax

i,s,t

)
∀ i ∈ J , s ∈ S, t ∈ T ; (5-12)

wspill
k,s,t ≤ wscen

k,s,t , :
(
αmax

k,s,t

)
∀ k ∈ WP , s ∈ S, t ∈ T ; (5-13)

lshed
d,s,t ≤ gd,t, :

(
ωmax

d,s,t

)
∀ d ∈ D, s ∈ S, t ∈ T ; (5-14)

− F n,m ≤ Bn,m

(
θRT

n,w,t − θRT
m,w,t

)
≤ F n,m,

:
(
ηRTmin

n,m,t , ηRTmax
n,m,t

)
∀ m ∈ Nn, n ∈ N , t ∈ T , s ∈ S;

(5-15)
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∑
i∈Ψn

(
δ+

i,s,t − δ−
i,s,t

)
+
∑

d∈Dn

lshed
d,s,t +

∑
k∈Ψn

(
wscen

k,s,t

− wDA
k,t − wspill

k,s,t

)
=

∑
m∈Nn

Bm,n

((
θRT

n,s,t − θRT
m,s,t

)
,

−
(
θDA

n,t − θDA
m,t

))
, :
(
λRT

n,s,t

)
∀ n ∈ N , t ∈ T , s ∈ S; (5-16)

θRT
(n=ref),s,t = 0, :

(
γRT

s,t

)
∀ t ∈ T , s ∈ S; (5-17)

wDA
k,t ≤ W max

k , :
(
µW P

k,t

)
∀ t ∈ T , k ∈ WP ;

(5-18)

rU
i,t ≤ Ri, :

(
πU

i,t

)
∀ i ∈ J , t ∈ T ; (5-19)

rD
i,t ≤ Ri, :

(
πD

i,t

)
∀ i ∈ J , ∀ t ∈ T ; (5-20)∑

i∈J
rU

i,t ⩾ R
sys

t , :
(
πUsys

t

)
∀ t ∈ T ; (5-21)

∑
i∈J

rD
i,t ⩾ Rsys

t , :
(
πDsys

t

)
∀ t ∈ T ; (5-22)

γCV aR
s + β ⩾

∑
t∈T

∑
i∈J

(
λE

i .gDA
i,t + λU

i .rU
i,t+

+ λD
i .rD

i,t + λSU
i,t + λSD

i,t

)
+
(∑

i∈J

(
λE

i .
(

δ+
i,s,t − δ−

i,s,t

)

+
∑
d∈D

(
λshed

d .lshed
d,s,t

))), :
(
πdualCV aR

s

)
∀ s ∈ S; (5-23)

−RDi ≤ gi,t − gi,t−1 ≤ RUi,t, :
(
µRD

i,t , µRU
i,t

)
∀ i ∈ J ,∀ t ∈ T \ {1}; (5-24)

−RDi ≤ gi,t − gi,0 ≤ RUi,t, :
(
µRD

i,t , µRU
i,t

)
∀ i ∈ J ,∀ t = 1; (5-25)

−RDi ≤ gi,t − gi,t−1 + δ+
i,s,t − δ−

i,s,t − δ+
i,s,t−1

+ δ−
i,s,t−1 ≤ RUi,t, :

(
µRDRT

i,t , µRURT
i,t

)
∀ i ∈ J ,∀ t ∈ T \ {1}; (5-26)

−RDi ≤ gi,t − gi,0 + δ+
i,s,t − δ−

i,s,t − δ+
i,s,0

+ δ−
i,s,0 ≤ RUi,t, :

(
µRDRT

i,t , µRURT
i,t

)
∀ i ∈ J ,∀ t = 1. (5-27)

where Ξ = {gDA
i,t ≥ 0, θDA

n,t , rU
i,t ≥ 0, rD

i,t ≥ 0, δ+
i,s,t ≥ 0, δ−

i,s,t ≥ 0, θRT
n,s,t, wspill

k,s,t ≥
0, lshed

d,s,t ≥ 0, ui,t ∈ {0, 1}, λSU
i,t ≥ 0, λSD

i,t ≥ 0, wDA
k,t ≥ 0, β, γCV aR

s ≥ 0} is the set of
decision variables, thus (5-1)–(5-27) falls into the class of Mixed-Integer Linear
Programming (MILP) problems. The objective function (5-1) minimises a risk-
adjusted functional of the total cost to supply energy, consisting of energy, up
and down reserves, start-up and shut-down of the units, and load shedding



Chapter 5. Computational Techniques and Model Accuracy in Energy and
Reserve Pricing for Power Systems with Non-Convex Costs 136

costs. By virtue of its technical and computational properties, we employ a
quantile-based risk functional, known as the Conditional Value-at-Risk (CVaR)
[120], to capture the risk aversion in the certainty equivalent social-welfare
maximisation problem. For a given percentile φ ∈ (0, 1), the CVaR measures
the average of the 1 − φ worst-valued scenario realisations. Accordingly, the
commitment and scheduling model aims at identifying a decision vector that
minimises the convex combination of risk-neutral expected and risk-averse
measure (CVaR) of system costs for supplying energy, (1−Λ).E[·]+Λ.CV aRφ

(
·). The Λ ∈ [0, 1] represents a risk-averse parameter. More specifically, a low

(high) value of Λ implies a low (high) weight given to risk aversion and a high
(low) weight to expected system cost, respectively.

The set of constraints (5-2) - (5-10), (5-18) - (5-22) and (5-24) - (5-25) are
in relation to the day-ahead stage. More specifically, (5-2) is the minimum gen-
eration and maximum capacity bounds for energy and reserve dispatch. These
bounds are multiplied by binary variables, indicating that those constraints
are active if the respective units are scheduled to start-up, or otherwise their
dispatch and reserve provision are enforced to be zero. Constraint (5-3) ensures
that the difference between energy dispatch and downward reserve cannot ex-
ceed the lower limit of generation. Similarly, binaries capture the on/off status
of these units. The remaining equations are regarding power balance in day-
ahead including the wind power generation scheduling (5-4), minimum and
maximum flow limits for each transmission line - represented by from and to
each node - (5-5), start-up costs when units are to be turned-on are represented
in (5-6) and (5-8), and shut-down costs when units are to be turned-off (5-7)
and (5-9), and reference angle (5-10). Constraints (5-11) - (5-12) limit the real-
time re-dispatch given by up and downward adjustments by allocated reserves
in the DA-stage. Equation (5-13) is in relation to the wind spill limited by
actual - i.e., RT - wind scenarios. Equation (5-14) shows the load shed - which
comes into play in case some demand cannot be supplied, e.g. caused by un-
derproduction of wind - bounded by the maximum load. Equation (5-15) sets
the power flow limits of each transmission line in RT, and (5-16) describes the
power balance in RT presented in terms of adjustments which should balance
out. Equation (5-17) shows the reference angle for the RT power generation.
Equation (5-18) is wind production plant DA dispatch bounded by its ca-
pacity. Equation (5-19) and (5-20) are up and down reserve provision limits,
respectively, of each generator and time period. Equations (5-21) and (5-22)
are minimum amount of total upwards and downwards reserves required by the
system operator to safeguard the power system for each time period. Equation
(5-23) is with regard to the definition of CVaR. Equations (5-24)–(5-27) are
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with regard to ramping up and down limits of each generator (first two at
day-ahead and last two at real-time stages), respectively.

The market operator clears the market and sets the energy price (La-
grange multiplier of the balance constraint (5-4) for the DA and (5-16) for
the RT), as well as up and down reserve prices (multipliers of the constraints
(5-21) and (5-22)). The market operator also decides through this optimisa-
tion model which generators are to be dispatched for 1-day ahead based on
the wind production scenarios available at the time of decision.

5.1.2
Dual Formulation

By relaxing the integrality constraints with regard to the binary variables,
i.e., 0 ≤ ui,t ≤ 1 :

(
µbinary

i,t

)
, ∀ i ∈ J , t ∈ T - the dual formulation of the
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relaxed version of the primal problem can be obtained.

max
Ξdual

∑
t∈T

(∑
i∈J

(−µbinary
i,t − µRD

i,t .RDi − µRU
i,t .RUi+

−RD
i .πD

i,t −R
U
i .πU

i,t)−
∑
s∈S

(
∑
i∈J

µRDRT
i,s,t .RDi+

− µRURT
i,s,t .RUi) +

∑
k∈WP

(−W max
k .µW P

k,t )+

+
∑

k∈WP,s∈S
(−wscen

k,s,t .α
max
k,s,t) +

∑
k∈Ψn,s∈S

(wscen
k,s,t .λ

RT
n,s,t)+

+
∑

d∈D,s∈S
(−gd,t.ω

max
d,s,t ) +

∑
d∈Dn,n∈N

(gd,t.λ
DA
n,t )+

+
∑

n∈N ,m∈Nn,s∈S
(−F̄n,m.(ηDAmin

n,m,t + ηDAmax
n,m,t +

+ ηRT min
n,m,s,t + ηRT max

n,m,s,t )) + Rsys
t .πD

t
sys + R

sys
t .πU

t
sys)

)
+(∑

i∈J
(−KSU

i .u0,i.µ
SU
i,t=1 + KSD

i .ui,0.µ
SD
i,t=1+

+ µRD
i,t=1.g0,i − µRU

i,t=1.g0,i)
)

+
∑
s∈S

(
∑
i∈J

µRDRT
i,s,t=1 .(g0,i+

+ δ+
0,t=1 − δ−

i,t=1)); (5-28)

subject to:

λE
i .(1− Λ)− µUmin

i,t + µUmax
i,t − µDmax

i,t − λDA
n,t

+
∑
s∈S

(πdualCV aR
s )− µRD

i,t + µRD
i,t+1 + µRU

i,t − µRU
i,t+1

+
∑
s∈S

(−µRDRT
i,s,t + µRDRT

i,s,t+1 + µRURT
i,s,t − µRURT

i,s,t+1)

⩾ 0, : gDA
i,t ,∀ i ∈ Ψn, t ∈ T \ {1}; (5-29)

λE
i .(1− Λ)− µUmin

i,t + µUmax
i,t − µDmax

i,t − λDA
n,t

+
∑
s∈S

(πdualCV aR
s )− µRD

i,t + µRU
i,t

+
∑
s∈S

(−µRDRT
i,s,t + µRURT

i,s,t )

⩾ 0, : gDA
i,t ,∀ i ∈ Ψn, t = T ; (5-30)

λU
i .(1− Λ) + µUmax

i,t − µUmin
i,t +

∑
s∈S

(−σUmax
i,s,t +

+ πdualCV aR
s .λU

i ) + πU
i,t − πU

t
sys ⩾ 0,

: rU
i,t, ∀ i ∈ J , t ∈ T , s ∈ S; (5-31)

λD
i .(1− Λ) + µDmax

i,t +
∑
s∈S

(−σDmax
i,s,t + πdualCV aR

s .λD
i )

+ πD
i,t − πD

t
sys ⩾ 0, : rD

i,t, ∀ i ∈ J , t ∈ T ; (5-32)

ϕs.λ
E
i .(1− Λ) + λRT

n,s,t + σUmax
i,s,t + πdualCV aR

s .λE
i
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− µRDRT
i,s,t + µRDRT

i,s,t+1 + µRURT
i,s,t − µRURT

i,s,t+1 ⩾ 0,

: δ+
i,s,t, ∀ i ∈ Ψn, t ∈ T \ {1}, s ∈ S; (5-33)

ϕs.λ
E
i .(1− Λ) + λRT

n,s,t + σUmax
i,s,t + πdualCV aR

s .λE
i

− µRDRT
i,s,t + µRURT

i,s,t ⩾ 0,

: δ+
i,s,t, ∀ i ∈ Ψn, t = T, s ∈ S; (5-34)

− ϕs.λ
E
i .(1− Λ)− λRT

n,s,t + σDmax
i,s,t + µRDRT

i,s,t

− µRDRT
i,s,t+1 − µRURT

i,s,t + µRURT
i,s,t+1 − πdualCV aR

s .λE
i

⩾ 0, : δ−
i,s,t, ∀ i ∈ Ψn, t ∈ T \ {1}, s ∈ S; (5-35)

− ϕs.λ
E
i .(1− Λ)− λRT

n,s,t + σDmax
i,s,t + µRDRT

i,s,t

− µRURT
i,s,t − πdualCV aR

s .λE
i

⩾ 0, : δ−
i,s,t,∀ i ∈ Ψn, t = T, s ∈ S; (5-36)

αmax
k,s,t + λRT

n,s,t ⩾ 0,

: wspill
k,s,t,∀ i ∈ Ψn, t ∈ T , s ∈ S; (5-37)

ϕs.λ
shed
d,t .(1− Λ) + λRT

n,s,t + ωmax
d,s,t + πdualCV aR

s .λshed
d

⩾ 0, : lshed
d,s,t ,∀ d ∈ Dn, t ∈ T , s ∈ S; (5-38)

− λDA
n,t +

∑
s∈S

(λRT
n,s,t) + µW P

k,t ⩾ 0,

: wDA
k,t , ∀ k ∈ Ψn, t ∈ T , s ∈ S; (5-39)

1− Λ− µSU
i,t +

∑
s∈S

(πdualCV aR
s ) ⩾ 0,

: λSU
i,t ,∀ i ∈ J , t ∈ T , s ∈ S; (5-40)

1− Λ− µSD
i,t +

∑
s∈S

(πdualCV aR
s ) ⩾ 0,

: λSD
i,t ,∀ i ∈ J , t ∈ T , s ∈ S; (5-41)

−Gmax
i .µUmax

i,t + Gmin
i .µUmin

i,t + Gmin
i .µDmax

i,t +

+ µbin
i,t + KSU

i .µSU
i,t +−KSU

i .µSU
i,t+1 −KSD

i .µSD
i,t +

+ KSD
i .µSD

i,t+1 ⩾ 0,

: ui,t, ∀ i ∈ J , t ∈ T \{T}; (5-42)

−Gmax
i .µUmax

i,t + Gmin
i .µUmin

i,t + Gmin
i .µDmax

i,t +

+ µbin
i,t + KSU

i .µSU
i,t −KSD

i .µSD
i,t ⩾ 0,

: ui,t,∀ i ∈ J , t = T ; (5-43)∑
m∈Nn

Bn,m.
(
− λDA

n,t + λDA
m,t +

∑
s∈S

(λRT
n,s,t − λRT

m,s,t)+

+ ηDAmax
n,m − ηDAmax

m,n − ηDAmin
n,m + ηDAmin

m,n

)
= 0,

: ∀ n ∈ N\{n = ref}, t ∈ T ; (5-44)∑
m∈Nn

Bn,m.
(
− λDA

n,t + λDA
m,t +

∑
s∈S

(λRT
n,s,t − λRT

m,s,t)+
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+ ηDAmax
n,m − ηDAmax

m,n − ηDAmin
n,m + ηDAmin

m,n

)
+

+ γt = 0,

: θDA
n,t ,∀ n ∈ {n = ref}, t ∈ T ; (5-45)∑

m∈Nn

Bn,m.
(

λRT
n,s,t − λRT

m,s,t + ηRT max
n,m,s,t − ηRT max

m,n,s,t +

− ηRT min
m,n,s,t + ηRT min

n,m,s,t

)
+ γRT

t,s = 0,

: θRT
n,s,t, ,∀ {n = ref}, t ∈ T , s ∈ S; (5-46)

Λ.(ϕs/(1− φ))− πdualCV aR
s ⩾ 0,

: γCV aR
s ,∀ s ∈ S; (5-47)

Λ−
∑
s∈S

(πdualCV aR
s ) = 0, : β; (5-48)

where Ξdual = {µUmin
i,t ≥ 0, µUmax

i,t ≥ 0, µDmax
i,t , λDA

n,t , ηDAmin
n,m,t ≥ 0, ηDAmax

n,m,t ≥
0, µSU

i,t ≥ 0, µSD
i,t ≥ 0, γt, σUmax

i,s,t ≥ 0, σDmax
i,s,t ≥ 0, αmax

k,s,t ≥ 0, ωmax
d,s,t ≥ 0, ηRTmin

n,m,t ≥
0, ηRTmax

n,m,t ≥ 0, λRT
n,s,t ≥ 0, γRT

s,t , µWP
k,t ≥ 0, πU

i,t ≥ 0, πD
i,t ≥ 0, πUsys

i,t ≥ 0, πDsys
i,t ≥

0, πdualCV aR
s ≥ 0, µRD

i,t ≥ 0, µRU
i,t ≥ 0, µRDRT

i,s,t ≥ 0, µRURT
i,s,t ≥ 0} is the set of dual

decision variables.

5.1.3
Cost Recovery

In this work, similar to the framework in [167, 116], we study different
cost recovery structures so that the generation companies would have sufficient
incentives to remain in the market and follow the system operator’s dispatch
decisions. Different than those works, nevertheless, we also take into account
any shortfalls with regard to the reserve allocations in the DA-stage.

5.1.3.1
Cost Recovery per Scenario (CRPS)

Constraint (5-49) warrants that generation companies would not incur
any losses under any scenario s ∈ S. Therefore, for each generator i ∈ Ψn and
scenario s ∈ S, we impose that:

∑
t∈T

(λDA
n,t − λE

i

)
.gDA

i,t − λSU
i,t − λSD

i,t +
(

πUsys
i,t − λU

i

)
.rU

i,t +
(

πDsys
i,t − λD

i

)
.rD

i,t

+
(

δ+
i,s,t − δ−

i,s,t

)
.
(

λRT
n,s,t/ϕs − λE

i

) ⩾ 0. (5-49)
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5.1.3.2
Cost Recovery in Expectation (CRIE)

Similar to (5-49), constraint (5-50) ensures that all the generation com-
panies participating in the market recover their costs for supplying energy and
reserves in DA-Stage and RT-Stage, but in expectation. More specifically, for
a given generator i ∈ Ψn, we ensure:

∑
t∈T

(λDA
n,t − λE

i

)
.gDA

i,t − λSU
i,t − λSD

i,t +
(

πUsys
i,t − λU

i

)
.rU

i,t +
(

πDsys
i,t − λD

i

)
.rD

i,t

+
∑
s∈S

ϕs.
(

δ+
i,s,t − δ−

i,s,t

)
.
(

λRT
n,s,t/ϕs − λE

i

) ⩾ 0. (5-50)

5.1.3.3
Cost recovery in DA-stage including reserves (CRDARES)

Constraint (5-51) ensures that the generators do not incur shortfalls when
scheduled for provision of energy and reserves taking into account only the DA-
Stage. As some electricity markets do not have an RT-Stage, this cost-recovery
scheme provides a comparison against the other two aforementioned schemes.
Therefore, for a given i ∈ Ψn,

With regard to the CRDARES scheme, Equation (5-51) is added to the
main problem, while the other constraints of the main problem with regard
to real-time are maintained. The intuition is that the system operator takes
a (risk-averse) day-ahead and real-time scheduling decision based on the real-
time scenarios and considering a cost recovery guarantee during the day-ahead
stage only. Hence, no cost recovery guarantees are given regarding the real-
time stage. This is parallel with one of the schemes proposed by the reference
[116], and it is maintained for comparability reasons. In addition, revenue cap
discussions in the European Union revolves around the day-ahead markets.
This makes CRDARES as a relevant scheme in practice as well.

∑
t∈T

(λDA
n,t − λE

i

)
.gDA

i,t − λSU
i,t − λSD

i,t

+
(

πUsys
i,t − λU

i

)
.rU

i,t +
(

πDsys
i,t − λD

i

)
.rD

i,t

) ⩾ 0. (5-51)
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5.1.3.4
Revenue Cap (REVCAP)

The REVCAP is adapted from the recently proposed European revenue
cap scheme which limits the income for generation companies from the day-
ahead stage triggered by high-cost gas generators impacting market clearing
prices. We note that this is only considered to be applied to DA energy markets,
which has been criticised, among others, due to its potential impact on the
other markets, such as intraday and balancing markets, etc.

The constraint (5-52) ensures that not only the marginal (variable)
costs of generators are covered but also their long-term costs, λLT

i , evaluated
as a technology-specific cap, differentiating among which generator of which
technology can earn at a maximum, as outlined in [162]. The maximum income
of low-cost technologies – such as wind, solar, nuclear, etc., is capped so
that the most they can earn from the day-ahead market is limited to their
overall costs, which includes a depreciation value of their long-term costs plus
possibly a mark-up. The Levelised Cost of Electricity1 (LCOE) is used for
this purpose. LCOE is regarded as the fair amount a generator needs to earn
back in order to break-even their lifetime costs [176]. Within the illustrated
revenue cap mechanism, the market-clearing process and uniform market price
remain unchanged. As an out-of-market procedure, the revenue exceeding the
cap of each generator is redistributed to consumers to mitigate their overall
high expenses under abnormal market and system conditions.

Fig. 5.1 illustrates this technology-specific cap mechanism and (5-52)
presents the constraints to be imposed in the market clearing procedure for
each generator i ∈ Ψn.

1Typically estimated as the average total cost of producing electricity over the power
plant lifetime.
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Figure 5.1: Technology-specific revenue cap, adapted from [162].

∑
t∈T

(λDA
n,t − λE

i

)
.gDA

i,t − λSU
i,t − λSD

i,t − λLT
i

 ⩾ 0. (5-52)

From a procedural perspective, under the REVCAP case, it is proposed in
this paper firstly to perform the market-clearing process including constraint
(5-52). Then, as an out-of-market mechanism, revenues exceeding the total
costs of generators based on the LCOE are reallocated from generators to
consumers.
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5.1.4
Risk-Averse Market-Clearing with Cost Recovery

Figure 5.2: Flowchart of the proposed model.

Following the discussion in Sections 5.1.1–5.1.3, the proposed risk-averse
market-clearing procedure with cost-recovery guarantees is presented in (5-53).
A flowchart of the proposed model is also provided in Figure 5.2. It is
based on the primal-dual interdependence which aims at minimising the
duality gap between ‘the risk-adjusted least-cost energy and reserve provision’
and ‘market price setting under the continuous relaxation of the non-convex
(binary) variables’.

min
Ξ,Ξdual

Equation (5-1) minus Equation (5-28)

subject to:

Primal Constraints: (5-2) – (5-27)

Dual Constraints: (5-29) – (5-48)

Cost Recovery Constraint: one of (5-49) – (5-52). (5-53)

It is worth highlighting that the market-clearing procedure formulation is
within the class of Mixed-Integer Bi-Linear Programming (MIBLP) models,
which might not be efficiently solved by available off-the-shelf solvers or
standard optimisation algorithms. Therefore, next, we present an efficient
solution approach for handling the bi-linear terms in (5-53) based on the
hybridisation of McCormick envelopes and binary expansion.
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5.2
Solution Methodology: Hybrid McCormick Envelopes and Binary Expan-
sion

We note that the market-clearing formulation in (5-53) is a non-convex
optimisation problem due to the bi-linear terms associated with the cost-
recovery constraints. Bi-linear terms arise when two decision variables multiply
each other, which is the case in the cost-recovery constraints with the product
between the clearing-price and cleared-quantity variables. Such problems,
classified as NP-hard [35, 108], might not be efficiently solved through available
off-the-shelf solvers; and linearisation of these terms is often applied. In this
section, we provide a two-step linearisation approach by combining McCormick
envelops and Binary Expansion (BE) approaches to recast the non-convex
optimisation problem into a MILP formulation, which can be solved efficiently
by leveraging state-of-the-art mixed-integer optimisation algorithms.

Formally, the main idea is to extend the standard binary expansion frame-
work [174, 177] with the inclusion of McCormick envelopes. More specifically,
firstly, note that the bi-linear terms encompass DA and/ or RT dispatch or
reserve-related variables for which operational feasibility limits their values.
Therefore, a binary expansion can be conveniently performed on these DA,
RT, and, reserve-related variables. For expository purposes, we focus the pre-
sentation in this section on the bi-linear term composed by λDA

n,t .gDA
i,t . Any

bounded, real-valued number (e.g., gDA
i,t ∈ [0, Gmax

i ]) can be written as a sum
of a fractional with a binary expanded term.

gDA
i,t = ∆gDA

i,t +
∑
l∈K

2l.z
(1)
i,t,l, (5-54)

where ∆gDA
i,t ∈ [0, 1], z

(1)
i,t,l ∈ {0, 1} and K = {0, . . . , ⌊log2(Gmax

i )⌋}. Hence, the
bi-linear term can be re-written as follows,

λDA
n,t .gDA

i,t = ∆gDA
i,t .λDA

n,t +
∑
l∈K

2l.z
(1)
i,t,l.λ

DA
n,t . (5-55)

Define v
(1)
i,t,l ∈ R and w

(1)
i,t ∈ R such that v

(1)
i,t,l = z

(1)
i,t,l.λ

DA
n,t and w

(1)
i,t = ∆gDA

i,t .λDA
n,t .

Then,

λDA
n,t .gDA

i,t = w
(1)
i,t +

∑
l∈K

2l.v
(1)
i,t,l. (5-56)

Further on, we apply the McCormick envelopes relaxation to both bi-linear
terms v

(1)
i,t,l and w

(1)
i,t . Firstly, for each l ∈ K, (5-57)–(5-58) describes the
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relaxation for v
(1)
i,t,l.

λL
n,t.z

(1)
i,t,l ≤ v

(1)
i,t,l ≤ λU

n,t.z
(1)
i,t,l; (5-57)

λL
n,t.
(
1− z

(1)
i,t,l

)
≤ λDA

n,t − v
(1)
i,t,l ≤ λU

n,t.
(
1− z

(1)
i,t,l

)
, (5-58)

where λL
n,t and λU

n,t are, respectively, lower- and upper-bounds on λDA
n,t . Albeit

the fact that the bounds for dual variables, e.g., λDA
n,t , are challenging to define,

due to the nature of the problem some assumptions can be made under normal
operating conditions. For instance, the highest marginal cost in the system can
be considered as the upper bound

(
λU

n,t

)
and its negative value, the respective

lower bound
(
λL

n,t

)
. Furthermore, since z

(1)
i,t,l ∈ {0, 1}, the McCormick relaxation

(5-57)–(5-58) is exact.
For the second bi-linear term wi,t = ∆gDA

i,t .λn,t, we apply the same
rationale leading to the following set of inequalities.

λL
n,t.∆gDA

i,t ≤ v
(1)
i,t,l ≤ λU

n,t.∆gDA
i,t ; (5-59)

λL
n,t.
(
1−∆gDA

i,t

)
≤ λDA

n,t − v
(1)
i,t,l ≤ λU

n,t.
(
1−∆gDA

i,t

)
. (5-60)

Therefore, for instance, for a given generator i ∈ Ψn, the cost recovery scheme
presented in (5-52) can be formulated by the following linear equation,

∑
t∈T

w
(1)
i,t +

∑
l∈K

2l.v
(1)
i,t,l − λE

i,t.g
DA
i,t − λSU

i,t − λSD
i,t − λLT

i

 ⩾ 0,

with w
(1)
i,t and v

(1)
i,t,l characterised by (5-57)–(5-58) and (5-59)–(5-60), respec-

tively. Two key points worth highlighting related to the benefits of combining
McCormmick envelopes with BE schemes with respect to using one of them
individually. On the one hand, note that the proposed hybrid approach has
the same order of complexity as the standard BE scheme recurrently used
in the technical literature [174, 177]. Thus, the extension to consider Mc-
Cormick envelopes does not introduce any additional computational burden
to the problem, but guarantees that it covers the whole continuous space on
which the bi-linear term is defined, differently from the standard BE scheme
in which an a priori discretisation (approximation) must be defined. On the
other hand, since the relaxation imposed by the McCormick envelopes is exact
whenever one of the two terms in the bi-linear expression is within its bound-
aries, we argue that expression (5-56) is expected to be tightly close to the
bi-linear term recurrently. More specifically, the only relaxation in the pro-
cedure stems from the first term of (5-54), which accounts for the fractional
part of the original variable, i.e., variable ∆gDA

i,t . It is since the second, binary-
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expanded, part is modelled using binary variables, thus at their boundaries by
construction. Therefore, due to the tight bounds of ∆gDA

i,t ∈ [0, 1], as opposed
to gDA

i,t ∈ [0, Gmax
i ], we expected that the solution using the hybrid approach be

tightly close to the exact one than applying the McCormick envelopes directly
in the original bi-linear term.

Finally, it is important to mention that a similar procedure can be per-
formed into the remaining bi-linear terms in the market-clearing model re-
casting the original risk-averse market-clearing procedure as a MILP model
suitable to be solved using state-of-the-art algorithms for mixed-integer opti-
misation problems. In the next section, a set numerical experiment is presented
to illustrate the applicability of the proposed clearing procedure in two case
studies.

5.3
Case Study

In this section, we illustrate the effectiveness of the proposed market-
clearing procedure using two case studies2. In Section 5.3.1, an illustrative,
small-scale system is considered and we focus our analysis on the following
four distinct setups: (i) risk-neutral, uncongested, and multi-commodity mar-
kets; (ii) risk-neutral, uncongested, and energy-only market; (iii) risk-neutral,
energy-only market with congestion; and (iv) risk-averse, congested with multi-
commodity markets. Furthermore, in Section 5.3.2, the representative IEEE
118-bus test system is considered, where we study the effectiveness of the pro-
posed clearing process under similar setups of the first case study. Finally,
in Section 5.3.4, the computational performance of the proposed solution ap-
proach is analysed and benchmarked against two BE schemes using the IEEE
118-bus test system.

For expository purposes, we also consider a conventional uplift mecha-
nism, hereinafter referred to as U1, where generators are compensated for any
potential revenue shortfall in a DA-energy dispatch-only setup. More specif-
ically, firstly, the optimal binary values are obtained by solving the primal
market-clearing problem (5-1)–(5-27). Secondly, the problem is re-solved by
having fixed the binaries to the optimal values obtained. The dual variables
are calculated accordingly from this convex problem in order to obtain DA
and RT energy, and reserve prices. Finally, a unit-specific uplift payment is
performed, on top of the payments resulting from the market clearance, as

2All numerical experiments are performed on an Intel® Core i7-8550U CPU, 1.99 GHz
with 8 GB of RAM machine under JuMP® and CPLEX® solver.
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follows:

U1 = −min

∑
t∈T

(
λE

n,t.
(
gDA

i,t − λE
i

)
− λSU

i,t − λSD
i,t

)
, 0

.

We note that real-time scheduling can be with 15 minutes or higher time
granularity in today’s electricity markets. The most similar market design
to the one described in this paper, such as in the United Kingdom (UK),
a time-window of half-an-hour to one-hour time-window is applied before
the actual delivery. Given the computationally intensive aspect of the model
and difficulties in uncertainty representation involving forecast simulations for
every, e.g., 15 minutes or shorter; for expository purposes, a time-window of
1-hour is applied without loss of generality.

5.3.1
Case Study 1: Illustrative System

This case study is adapted from [116], but with both energy and reserve
markets under consideration. Throughout the experiment, we assume two-
clearing periods representing a low and high demand level. The illustrative
system is made up of 3 buses, 3 transmission lines, 3 conventional generators,
and 1 wind power production plant, as shown in Figure 5.3. The related data
concerning generation and reserve capacity limits, marginal costs of energy,
up and down reserves, start-up and shut-down costs are presented in Table
5.1. Reactance of the lines are at 0.13 p.u., and the capacities are at 200 MW.
Uncertainty in renewable energy supply resumes to wind power generation and
is represented by means of two scenarios: Scenario 1 (high) with a probability
of occurrence of 0.6 and scenario 2 (low) with 0.4 probability.

Figure 5.3: Illustrative 3-bus system.
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Table 5.1: 3-Bus thermal generation data.

Gmax
i Gmin

i Ri Ri λE
i λU

i λD
i λSU

i λSD
i

[MW ] [MW ] [MW ] [MW ] [$/MW h] [$/MW h] [$/MW h] [$] [$]
G1 95 10 47.50 47.50 20.03 10.02 10.02 101.10 50.55
G2 100 10 50.00 50.00 50.06 25.03 25.03 103.20 51.60
G3 105 10 52.50 52.50 100.01 50.00 50.00 2,001.06 1,000.53

5.3.1.1
Risk-neutral energy and reserve market

Table 5.2 showcases the resulting DA and RT energy and reserve prices
under the different pricing mechanisms analysed. Note that the prices do
not vary across scenarios, since no congestion is considered. As anticipated,
U1 result in the lowest energy and reserve prices, since the optimisation
problem does not inherently impose cost recovery. CRIE yields the lowest
price outcomes. In addition, prices under CRDARES are the same as under
CRPS. The expected prices for the RT are equal to the DA prices. Table 5.3
presents an overview of consumer payments (Cons. PMT ), expected cost of
supplying energy (Exp. Cost) and duality gap (Dual. GAP), as a percentage
of the expected cost, under the different pricing mechanisms considered.
Consumer payments consist of the total cost of energy, reserves, real-time re-
dispatch as a function of cleared prices and quantities, as well as start-up and
shut-down costs of generators. The cost recovery guarantee represents higher
consumer payments than uplift-payment-based approaches. The expected cost
of supplying energy in Table 5.3 is calculated from the objective function of the
original primal problem, i.e., the social cost of supplying energy. CRDARES
depicts the highest costs, whereas U1 and REVCAP yield the least cost.

Table 5.2: Case 1: Energy & Res. Market: DA-energy, reserve, and RT-prices
($ / MWh).

DA-Energy DA-Reserve RT
Time t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

CRDARES 20.03 129.42 28.37 10.02 20.03 129.42
CRIE 20.03 114.55 28.37 10.02 20.03 114.55
CRPS 20.03 129.42 28.37 10.02 20.03 129.42

U1 20.03 95.02 25.03 10.02 20.03 95.02
REVCAP 20.03 131.67 28.37 10.02 20.03 100.02

In Table 5.3, a widening duality gap can be interpreted as a decreased so-
cial welfare. REVCAP shows the highest duality gap, followed by CRDARES.
As U1 is in relation to a convex optimisation problem where the binary values
are fixed, its duality gap is, therefore, zero. Table 5.4 illustrates the opportu-
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Table 5.3: Case 1: Energy & Res. Market: Consumer payment ($), Expected
cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 44,211.25 40,040.48 43,021.31 34,480.17 35,680.57

Exp. Cost 20,711.13 20,401.95 20,406.90 19,884.06 20,703.27
Dual. GAP 3.89% 2.19% 2.99% - 4.08%

nity cost of each generator, calculated as the difference between the optimal
self-scheduling outcome of each generator and the income obtained under each
pricing mechanism. The latter is derived from the calculated DA and RT en-
ergy and reserve prices under each scheme, and, as it is assumed that the
generators are price-takers. It can be observed that without any cost recovery
or similar mechanism, there would be relatively high incentives to deviate from
market outcomes. This may give rise to generators diverging from truthful bid-
ding principles. Amongst the cost recovery mechanisms, expectedly, REVCAP
represents the highest incentive for the generators to deviate from market out-
comes, followed by CRDARES. CRIE leads to the highest alignment between
the market and the individual unit. Uplift methods, which are usually criticised
due to the respective payments are not reflected directly in energy prices, in
this case study, also bring a misalignment between self-scheduling and the mar-
ket. Especially, this results in G1 and G3 having higher incentives to deviate
from market outcomes.

Table 5.4: Case 1: Energy & Res. Market: Opportunity cost under different
pricing schemes ($).

CRDARES CRIE CRPS U1 REVCAP
G1 0.00 0.00 0.00 1,576.58 3,079.25
G2 391.72 0.00 0.00 300.30 0.00
G3 927.02 562.37 955.68 2,051.01 0.00

Total 1,318.74 562.37 955.68 3,927.89 3,079.25

5.3.1.2
Risk-neutral energy-only market

In this section, we compare the multi-commodity market combined
results against an the typical energy-only market design implemented in several
power systems worldwide. Table 5.5 showcases the energy prices in this setup.
For time period 1, compared to a bi-product - energy and reserve - market in
Section 5.3.1.1, the energy-only market depicts higher DA and expected RT
energy prices. In the energy and reserve market structure G1 is the price-setter,
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though in the energy-only market the price is affected by the marginal cost
of G2. For time period 2, as the bi-product market results in a comparatively
lower clearing price, the influence of G3 on the price is more pronounced.
Table 5.6 showcases the consumer payment, expected cost of supplying energy,

Table 5.5: Case 1: Energy-only market case: DA and RT prices ($ / MWh).

DA-Energy DA-Reserve RT-scen1 RT-scen2
Time t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2

CRDARES 33.84 119.07 33.84 119.07 20.03 100.01 54.56 147.65
CRIE 33.84 91.95 33.84 91.95 20.03 50.06 54.56 154.79
CRPS 33.84 103.51 33.84 103.51 20.03 50.06 54.56 183.69

U1 20.03 70.04 20.03 70.04 20.03 50.06 20.03 100.01
REVCAP 33.84 120.59 33.84 120.59 20.03 100.01 54.56 151.46

and the duality gap for the energy-only market. Note that, as expected, the
consumer payment and expected cost are significantly lower for the energy-only
case compared to the bi-product market. At the same time, we highlight that
these results may not be entirely comparable, nevertheless since energy-only
markets usually require (out-of-market) mechanisms to safeguard the power
system and supply security, whose costs are not reflected. In the case of the
energy-only market, the duality gap slightly widens as a percentage of the
expected cost as compared to a bi-product market, rising from 4.08% to 6.33%
in the case of REVCAP. Finally, Table 5.7 is in relation to the opportunity
costs of generators. This single-product market depicts substantial differences
among different pricing schemes. The level of incentive misalignment is the
highest for REVCAP followed by CRDARES.

Table 5.6: Case 1: Energy-only market case: Consumer payment ($), Expected
cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 37,405.99 29,476.32 32,822.23 24,250.88 33,551.32

Exp. Cost 13,606.25 13,561.61 13,560.47 13,553.43 13,563.71
Dual. GAP 5.50% 3.68% 4.83% - 6.33%

Table 5.7: Case 1: Energy-only market case: Opportunity cost under different
pricing schemes ($).

CRDARES CRIE CRPS U1 REVCAP
G1 104.98 110.23 110.23 - 1,930.79
G2 1,241.08 162.16 162.16 300.30 1,240.72
G3 737.23 812.27 1,254.01 802.26 760.69

Total 2,083.29 1,084.66 1.526.40 1,102.56 3,932.20
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5.3.1.3
Risk-neutral energy and reserve market: congestion case

Now on, we impose congestion in the network system by limiting the
line capacities to 50, 170, and 100 MW for lines 1, 2, and 3, respectively. This
limitation did not induce changes in the DA-energy prices for the time period
1 under all mechanisms, except U1 which differed per node varying between
20.03 and 32.04 $/MWh. This results from the fact that the time period is
characterised by a low demand level. In time period 2, however, prices differ
per node as opposed to the uncongested case. U1 has very high prices, 416.77
$/MWh and 813.52 $/MWh for nodes 2 and 3, as a highly costly load-shedding
would be necessary at those nodes. From Table 5.8, we note that consumer
payment reduces in most cases due to the load-curtailment. Load-shedding
costs are not directly included in the consumer expenses under all schemes.
U1 gives rise to substantial consumer payments because of significant clearing
price increases. High clearing prices under U1 are observed because of the
characteristic of U1, in which firstly the optimal binary values are obtained
from the primal problem, and then these are fixed at their optimal values,
and finally, the primal problem is rerun. This procedure of fixing of binaries
leads directly to substantial day-ahead clearing prices per node, driven by load-
shedding becoming the marginal driver of price. In other pricing schemes, this
is not the case, because binary values are not fixed, and this gives flexibility in
the optimisation problem. Marginal costs driving the clearing-price under these
schemes come from generators marginal costs directly. Expected costs, on the
other hand, do not show too large variations between different pricing schemes.
The duality gap widens notably. From Table 5.9, each scheme depicts some
incentives to deviate from market outcomes for G1 and G2. G3 would ideally
not participate in the market under CRIE if it were self-scheduled. Another
conclusion is that not only G1 and G2 but also G3 would have diverging
incentives under U1 due to congestion.

Table 5.8: Case 1: Congestion case: Consumer payment ($), Expected cost of
supplying energy ($) and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 33,372.19 28,098.84 35,067.17 133,765.42 29,570.77

Exp. Cost 52,016.66 51,637.66 51,545.24 50,887.44 51,561.87
Dual. GAP 61.57 % 59.67 % 62.03 % - 60.17 %
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Table 5.9: Case 1: Congestion case: Opportunity cost under different pricing
schemes ($).

CRDARES CRIE CRPS U1 REVCAP
G1 5,320.50 3,803.49 5,867.30 1,677.67 5,610.63
G2 179.22 131.73 171.61 2,297.30 204.74
G3 0.00 2,782.47 1,155.89 3,181.89 0.0

Total 5,499.72 6,717.69 7,194.80 7,156.85 5,815.37

5.3.1.4
Risk-averse energy and reserve market

For the risk-averse case, we analyse a mean-risk situation by setting
Λ = 0.50, giving equal weight to both the risk-neutral expected value solution
and the expected shortfall, measured by CVaR. From Table 5.10, one of the
findings is that energy prices rise comparatively for the time period 2 under
all cases except CRDARES, against the risk-neutral case. The reserve price for
time period 2, which represents a peak hour, increases as a result of the risk
aversion of the market operator.

Table 5.10: Case 1: Risk aversion case: DA-energy, reserve and RT-prices
($/MWh).

Method DA-Energy DA-Reserve RT
Time t=1 t=2 t=1 t=2 t=1 t=2

CRDARES 20.03 129.33 28.37 16.02 20.03 129.33
CRIE 20.03 119.07 28.37 16.02 20.03 119.07
CRPS 20.03 119.41 28.37 16.02 20.03 119.41

U1 20.03 100.01 25.03 16.02 20.03 100.01
REVCAP 10.02 131.67 14.18 46.67 10.02 90.01

From Table 5.11, the main conclusion is that both consumer payment
and the expected cost of supplying energy increase, which is an anticipated
outcome. From Table 5.12, the risk aversion of the system operator creates,
in general, higher incentives for all generators to deviate from market clearing
results.

We note that a risk-neutral framework takes the average impact of the
expected scenarios into account. This differs from a risk-averse framework,
in which the tail-risk is also reflected in the decision-making process so that
robustness - in case an adverse scenario materialises in reality - can be achieved
depending on the choice of confidence level.

In order to illustrate the ’value’ of a risk-averse framework, a high-impact
unobserved extreme scenario with low wind is assumed to occur as a real-time
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Table 5.11: Case 1: Risk aversion case: Consumer payment ($), Expected cost
of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 45,109.56 42,209.70 42,272.88 37,768.35 37,413.04

Exp. Cost 20,785.13 20,761.61 20,604.18 20,260.86 20,786.38
Dual. GAP 2.75% 1.97% 2.86% - 3.41%

Table 5.12: Case 1: Risk aversion case: Opportunity cost under different pricing
schemes ($).

CRDARES CRIE CRPS U1 REVCAP
G1 3,022.16 3,021.02 3,024.44 2,778.06 3,323.12
G2 987.79 1,035.55 1,496.60 675.75 0.00
G3 2,828.25 2,376.28 1,764.98 2,001.06 2,915.15

Total 6,838.20 6,432.85 6,286.02 5,454.87 6,238.27

realisation. This is in order to measure the load-shedding in extreme cases.
Firstly, a first-stage solution day-ahead scheduling with and without risk-
aversion consideration is obtained. The quality of the first-stage solution is
evaluated, measured by load-shedding level under risk-neutral and risk-averse
frameworks. Without loss of generality, it is also assumed that generators are
not fully flexible and cannot increase their generation by more than 50% in
real-time compared to their commitment. For a demand level of 320 MW
within 1-hour period and considering the expected wind scenarios used in this
case study, as in Table 5.13, both frameworks dispatch 95 MW for the wind
park at the day-ahead stage. Risk-averse framework, being more conservative,
schedules in day-ahead a lower quantity from G2 and a higher one from G3 due
to high wind uncertainty, although G3 has a higher marginal cost. Accordingly,
risk-neutral framework would need to shed 55 MW of load in real-time in
order not being able to re-dispatch sufficiently from especially G3 because of
its inflexibility, given low wind generation realisation of 10 MW. In the case of
risk-averse framework, the 12.5 MW of load would be shed.

Table 5.13: Case 1: Illustration of benefit of risk-aversion.

Risk-neutral Risk-averse Risk-neutral Risk-averse
DA Dispatch DA Dispatch RT Realisation RT Realisation

MW MW MW MW
G1 85 85 95 95
G2 100 65 100 97.5
G3 40 75 60 105

WP 95 95 10 10
Generation Total 320 320 265 307.5

Load-shedding 55 12.5



Chapter 5. Computational Techniques and Model Accuracy in Energy and
Reserve Pricing for Power Systems with Non-Convex Costs 155

5.3.2
Case Study 2: IEEE-118 Test System

Case Study 2 is based on the IEEE-118 test system, adapted to fit
the Belgium, Netherlands, Sweden, Germany, and Norway power systems
characteristics. The test system consists of 118 buses, 186 transmission lines,
28 conventional generators, and 26 weather-dependent production facilities.
We assume three clearing periods representing low, mid, and high load levels.
The wind output uncertainty is accounted for after fitting its uncertainty
into a Weibull distribution as in [178]. The study uses the estimates by Met
Office (UK National Weather Service) as nominal expected values of the
distribution. For the characterisation of the wind output, 25 scenarios are
randomly sampled. By fitting the actual data to the Weibull distribution, point
estimates are obtained. The shape and scale parameters of the distribution are
1.69 and 18.53, respectively. As a congestion case, the capacity of five branches
originating from buses 69 and 89 - namely, branches 105, 106, 107, 136, 137 -
are reduced: the first three of them to 40 % of their capacity, and the last two
to 20% of their capacity. This congestion setup may arguably be restrictive for
the normal operation of the network where the generators are more static and
not weather-dependent. However, the countries with increased penetration of
renewable sources, such as the case in the Netherlands, are observing structural
congestion as a new reality.

Table 5.14 shows the overview of consumer payments, expected cost of
supplying energy, and duality gap results under different pricing schemes. One
can observe that cost-recovery imposed cases have relatively similar results in
terms of the expected cost of supplying energy, with CRPS and CRDARES
among the highest. As expected, CRPS and CRDARES induce the highest
consumer payments, with REVCAP the second lowest and CRIE the lowest.
A similar order is also observed with regard to the duality gaps.

Table 5.14: Case 2: Risk-neutral Energy and Reserve: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 803,202.70 698,943.54 803,202.70 778,414.87 720,080.10

Exp. Cost 332,668.17 309,954.29 333,382.46 309,193.97 309,793.97
Dual. GAP 8.13% 6.10% 8.22% - 5.25%

We note that the clearing prices under different mechanisms do not show
large deviations from each other. RT prices in expectation are equal to the DA
prices. For the energy and reserve market risk-neutral case, the market clearing
prices for energy are at $22.10, $19.96, $68.98 per MWh for the time periods 1,
2, and 3, respectively. Regarding the energy-only market case, the prices are
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$9.77, $10.30, $176.99, respectively. Risk-averse multi-commodity market case
clears the prices at $23.31, $21.96, $75.52, respectively. Table 5.15 outlines the
average profit per generator under each pricing regime. REVCAP results in
the lowest profits per generator for the risk-averse setup. When risk aversion
is taken into account, average profit deviations are relatively low. Congestion
causes the average profit to almost double, except for the REVCAP case.
Congestion case results, as shown in Table 5.16, show very comparable results
for all schemes. REVCAP indicates the lowest consumer payments, 32.96%
less when compared against CRIE, for instance.

Table 5.15: Case 2: Average profit per generator under different pricing schemes
and market, operational case ($).

CRDARES CRIE CRPS U1 REVCAP
En.-Res. Markets 9,861.87 10,484.85 9,825.33 9,652.28 8,821.82

Congestion 19,642.55 20,028.43 19,852.69 18,028.43 11,391.84
Energy only 12,379.87 13,638.42 12,300.78 11,999.87 9,853.00
Risk averse 10,567.63 10,572.57 10,566.59 9,573.44 9,082.16

Table 5.16: Case 2: Risk-neutral Energy and Reserve with Congestion: Con-
sumer payment ($), Expected cost of supplying energy ($), and Duality gap
(%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 1,410,542.41 1,411,255.44 1,409,872.31 1,408,118.22 945,159.65

Exp. Cost 449,719.47 440,848.83 442,870.54 440,648.93 440,733.93
Dual. GAP 7.78% 7.15% 7.30% - 7.14%

Congestion case price results, as in Fig. 5.4, indicate large fluctuations,
especially around node 69 where a large generator and one of the congested
lines are located. The price shock is the highest at hour 3 when the system
loading level is the highest. The effect of congestion in the line originating from
bus 89 is perceivable also at other nodes, e.g., node 81, severely. Similarly,
node 116 shows a large price shock at hour 3. The lost opportunity cost per
generator is presented in Fig. 5.5. The energy and reserve risk-neutral market
case is the least varying one, whereas the energy-only case shows relatively
large opportunity costs for some generators. It is attributable to the fact that
co-optimisation of energy and reserves results in a more informed allocation,
leading to lower opportunity costs for generators. Congestion gives results
in a higher number of outliers with relatively high lost opportunity costs.
Since clearing prices are higher in the case of congestion, at some nodes some
generators might be willing to dispatch more compared to what is feasible
under the central dispatch which considers network constraints. Self-scheduling
does not consider network constraints.
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Consumer payment, expected cost, and duality gap results for risk-averse
energy and reserve case are presented in Table 5.17. Risk aversion gives result
in an alignment between the schemes. REVCAP differs from the others in
terms of providing the lowest consumer payment. Similarly, Table 5.18 outlines
consumer payment, expected cost, and duality gap results for the risk-neutral
energy-only case. These are comparable to the bi-commodity case, with orders
of magnitude of the schemes being different.

Figure 5.4: Case 2: Congestion DA-energy prices per node ($ / MWh)

Figure 5.5: Case 2: Lost opportunity cost per generator ($)
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Table 5.17: Case 2: Risk-Averse Energy and Reserve: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 918,276.30 918,315.38 918,220.19 870,789.82 837,721.03

Exp. Cost 333,139.21 332,911.71 333,139.21 333,099.21 332,799.14
Dual. GAP 5.50% 5.47% 5.50% - 5.46%

Table 5.18: Case 2: Risk-neutral Energy Only: Consumer payment ($), Ex-
pected cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 665,936.97 573,133.70 658,626.21 523,667.28 487,163.65

Exp. Cost 194,866.04 189,450.41 192,726.77 187,177.01 189,260.96
Dual. GAP 5.41% 6.28% 5.47% - 5.53%

5.3.3
Case Study 3: GB-29 Bus System

This Case Study is based on [32] as well as [179]. The Great Britain
(GB) system comprises 29 buses, 99 transmission lines, 52 generators, and 10
wind farms. These wind generation facilities are connected to buses 1, 2, 3, 4,
6, 7, 11, 19, 20 and 27. Two major generators are located at node numbers
25 and 27. Based on the data, conventional generators have marginal costs
varying between 4.42 and 13.0 $ per MWh. The demand totals to 225.30 GW
in the first hour and 444.25 in the second hour, allocated to each node in
similar percentages as in [32]. 25 wind scenarios and 2 hours of operations are
considered in this analysis. Wind scenarios cover 45% and 22% of the demand
within hour 1 and 2, respectively. As a congestion case, the capacity of one of
the lines connected to generator 25 is reduced to 60% of its capacity.

Table 5.19 outlines the consumer payments, expected cost of supplying
energy and duality gap results under different pricing schemes. The observa-
tions are similar to that of Case 2: cost-recovery imposed cases depict com-
parable results in terms of expected cost of supplying energy and consumer
payment. CRPS leads to the highest consumer payments and duality gaps,
preceded by CRDARES and CRIE.

Table 5.19: Case 3: Risk-neutral Energy and Reserve: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 7,800,402.58 6,311,728.35 7,800,539.81 7,859,808.66 6,310,000.00

Exp. Cost 1,656,473.51 1,648,782.12 1,657,447.46 1,645,963.14 1,650,000.00
Dual. GAP 3.57% 2.10% 3.59% - 1.75%

Congestion case, as described in Table 5.20, do not indicate large devia-
tions amongst the schemes. As in Case 2, REVCAP gives the least consumer
payment, which is 8.34 % lower than CRIE.
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Table 5.20: Case 3: Risk-neutral Energy and Reserve with Congestion: Con-
sumer payment ($), Expected cost of supplying energy ($), and Duality gap
(%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 8,300,654.87 7,684,533.42 8,602,888.23 7,568,823.32 7,043,464.01

Exp. Cost 1,800,394.71 1,750,689.33 1,833,689.11 1,750,622.83 1,750,867.29
Dual. GAP 10.91% 10.82% 10.21% - 10.79%

The lost opportunity cost per generator is given in Fig. 5.6. As observed
for Case 2, the energy and reserve risk-neutral market case is the least volatile,
while on average the energy-only case depicts markedly large opportunity costs
for some generators. Congestion leads to more outliers.

Figure 5.6: Case 3: Lost opportunity cost per generator (x10 $)

Risk-averse case, as described in Table 5.21, shows that REVCAP
gives result to lowest consumer payments. Other schemes provide comparable
results. Both Case Study 2 and 3 show that without any cost recovery or similar
mechanism, there are incentives to deviate from market outcomes, though to a
lesser extent especially when energy and reserve markets are jointly considered,
as compared to the Case Study 1.

Table 5.21: Case 3: Risk-Averse Energy and Reserve: Consumer payment ($),
Expected cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 8,544,378.99 8,542,627.21 8,541,092.90 8,341,253.40 7,909,060.25

Exp. Cost 1,702,200.19 1,703,699.81 1,702,281.57 1,702,221.21 1,700,561.10
Dual. GAP 6.61% 6.35% 6.40% - 6.34%
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Table 5.22: Case 3: Risk-neutral Energy Only: Consumer payment ($), Ex-
pected cost of supplying energy ($), and Duality gap (%).

CRDARES CRIE CRPS U1 REVCAP
Cons. PMT 6,240,329.22 5,990,621.01 6,123,821.12 5,500,299.91 5,201,308.81

Exp. Cost 1,027,829 990,625.41 1,019,653.53 988,235.51 989,320.87
Dual. GAP 6.11% 6.78% 6.01% - 6.13%

5.3.4
Computational Analysis: IEEE-118 Test System

Table 5.23 compares the standard BE scheme with a step size discreti-
sation of 20 MW (large) and 10 MW (small) for energy. These are compared
against the proposed hybrid mechanism described in Section 5.2, which blends
BE with McCormick envelopes. For expository purposes, the computational
analysis is made on the CPRS scheme for the energy and reserve, risk-neutral
case. Similar conclusions can be drawn for other schemes. The proposed algo-
rithmic procedure reduces the computational time by roughly 70% and achieves
a solution 1.8% lower than the binary expansion small step size case, high-
lighting the computational capability of the proposed hybrid procedure, both
in speed and solution quality.

Table 5.23: Case 2: Computational Analysis

BE-Large BE-Small Hybrid
Nb. of cont.var. 181,928 182,864 170,030
Nb. of bin.var. 15,370 16,106 34,712

Nb. of total var. 197,298 198,970 204,742
Nb. of constraints 415,258 601,088 877,099

Computational time [sec.] 128,596.20 136,025.55 40,774.39
Obj.value [USD] 86,887.28 66,051.66 64,855.45

5.4
Chapter Conclusion

In this paper, a market-clearing procedure is proposed that efficiently
balances a reasonable-costly scheduling for the next day’s operation with
an endogenous cost-recovery guarantee. Structurally, the rationale is to co-
optimise energy and reserves in a stochastic risk-averse framework while
endogenously ensuring cost recovery for generation companies. To this end,
different income sufficiency schemes are considered: i) warranting DA-energy
and reserve-related shortfalls to be covered; ii) providing revenue sufficiency in
expectation of the RT scenario realisations; iii) guaranteeing self-sustainability
for generators in every ‘credible’ scenario agreed by the market players. These
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mechanisms are compared against the existing uplift payments – based on out-
of-market compensation schemes, for the DA-stage. A revenue cap, limiting
windfall profits for low-cost generators and reallocating them to consumers, is
also designed and discussed.

The resulting stochastic market-clearing procedure formulation is within
the class of Mixed-Integer Bi-Linear Programming (MIBLP) models, thus
challenging to be solved using off-the-shelf solvers or standard optimisation
algorithms. Therefore, a hybridisation of McCormick envelopes and binary
expansion is proposed to enhance the computational capability to solve the
clearing problem. Numerical experiments indicate that the computing time
under this solution approach decreases by 70% compared to the standard
binary expansion when applied to an instance of the IEEE-118 test system. Two
case studies are also conducted to illustrate the effectiveness of the proposed
market-clearing procedure. In summary, we observe that:

1. Although the cost-recovery mechanisms are intuitively similar, under a
highly uncertain wind power generation environment, as in case study
1, they depict heterogeneous dispatch and price outcomes. This aspect
has also been observed by [116]. Moreover, the inclusion of risk aversion
results in an increased alignment between the pricing schemes. Revenue
cap indicates in almost all cases the lowest consumer payments, which
competes mostly with CRIE.

2. Under high uncertainty, mechanisms other than CRPS may not always
warrant covering the costs of the generation companies. Nevertheless,
such a mechanism may also cause shifts of revenues from the least
marginal cost generators toward higher-cost ones. This can also be
concluded based on the proposed pricing schemes by [116].

3. In the bi-commodity markets with co-optimising energy and reserves
clearing, the costs for safeguarding the power system are more transpar-
ently allocated and calculated. This aspect is studied in a recent paper
in a different framework [30]. An energy-only market would otherwise
require out-of-market mechanisms to settle any real-time deviations.

4. In terms of opportunity costs, some high-cost generators, may not have
incentives to enter the market solely based on price signals. They may
have high incentives to deviate from market outcomes. This finding is
also supported by earlier works, such as [159, 28, 116]. It is shown that
consideration of reserve markets and risk aversion may not be sufficient
to mitigate these incentives.
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Transmission congestion can lead to high market-clearing prices, as
observed particularly in Case 1. Future research can look into fairness aspects
of uplift or other out-of-market mechanisms, and how to reimburse affected
consumers. As a future direction, market power aspects could also be studied.



6
Conclusions, Limitations and Future Perspectives

This Chapter reuses and extends the conclusions in the following pub-
lications: [Paper A] Martin, N. C., & Fanzeres, B. (2023, June). Linearisa-
tion Based Decomposition Method for Circle Approximation in AC Network
Constrained Unit Commitment. In 2023 IEEE Belgrade PowerTech (pp. 1-6).
IEEE, which is herewith referenced and cited as [20]. [Paper B] Martin, N.
C., & Fanzeres, B. A Two-Level ADMM Algorithm for Multi-Agent DSO-TSO
Congestion Management and Voltage Control Coordination with Limited In-
formation Exchange. In process of publication, which is referenced and cited as
[140]. [Paper C] Martin, N. C., & Fanzeres, B. (2023). Stochastic risk-averse
energy and reserve scheduling and pricing schemes with non-convexities and
revenue caps. Electric Power Systems Research, 225, 109858., which is refer-
enced and cited as [29]. A related publication supporting the conclusions is
[Paper D] Martin, N. C., & Fanzeres, B. (2023, September). A Stochastic
Risk-Averse Model to Price Energy in Pool-Based Electricity Markets with
Non-Convex Costs and Revenue Caps. In 2023 International Conference on
Smart Energy Systems and Technologies (SEST) (pp. 1-6). IEEE. The latter
is referenced and cited as [18].

6.1
Overview of conclusions

In this thesis, models and algorithms are developed so that computational
capability and model accuracy are improved for

i) AC Network-constrained Unit Commitment (NC-UC) / optimal power
flow (OPF) for standalone normal operations as well as ‘coordinated transmis-
sion and distribution system operations to mitigate congestion and voltage
problems with a limited network information interchange’;

ii) locational marginal pricing (LMP) for DC-NCUC for transmission
system under non-convex operational decisions and stochastic renewable gen-
eration (RES).

The main conclusions and future perspectives are as follows:
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6.1.1
Conclusions, limitations and future perspectives for computational tech-
niques and modelling accuracy for AC UC and OPF

Conclusions
In this contribution, linked to [Paper A], we proposed a methodology to
solve AC-NCUC problems, which is shown to be computationally beneficial
especially for solving relatively large network problems, with 118-bus and 240-
bus which tend to be state-of-the-art network sizes. This methodology relies
on i) quadratic relaxation for the conic formulation, and linearisation of all
resulting quadratic constraints, ii) applying an outer approximation based
decomposition algorithm to select optimal lines from a continuous set. Since the
linearisation procedure in [133] may require a large number of discretisations
selected a priori along with their enumeration, the proposed procedure in
this contribution enhances scalability, given the fact that it solely includes
discretisations (tangents) which improve the solution.

We numerically demonstrated the efficiency of the proposed algorithm,
which converges after a few iterations. It gives computational savings compared
to standard SOCP. For medium-loading conditions, the results are similar to
those provided by SOCP, which tend to be precise [129]. With regard to high-
loading conditions, under which SOCP results may be less precise, the devised
algorithm enhances the solution quality. The latter is measured in this work
in terms of how much the original non-convex equality constraint – which
describes a cone when relaxed into an inequality constraint – is violated under
both solutions. For a low load-level, the load flow related results from the
algorithm can be more disperse, though on average provide a higher precision
than SOCP.

These main findings are also supported by extensive numerical experi-
ments represented by performance curves, based on simulations by considering
randomly drawn instances for important parameters.

Limitations and future perspectives
Future works can make a comparison between the outer approximation-based
approach [91], as applied in this work, against an inner approximation. Fur-
thermore, future works can extend the study in relation to the circumstances
under which DC power flow (linear) approximation to an AC system would not
perform well. Stability and computational characteristics of the proposal can
be analysed in more detail, as low-loading conditions, for example, resulted in
a relatively high constraint violation for one of the instances analysed. Some
constraint violations can be anticipated for a low system-loading, since the
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devised method uses a quadratic relaxation in which the bounds are set at the
maximum voltage limits, which might not be tight especially for low-loaded
networks. Handling this aspect is left as future work.

Other than these, one of the limitations of the thesis is the potential
existence of other convexification techniques which have not been extensively
studied though highlighted in Chapter 2 - Methodological Background. As fu-
ture work, tighter convex relaxations can be sought, and other comparisons can
be made with other techniques, such as semi-definite programming or hybrid
methods combining SDP-SOCP, also in view of different loading conditions.
Potential tightening of quadratic approximation applied in this thesis through
a dynamic circle approximation with valid tangents (cuts) is an ongoing work.
Another work-in-progress is applying different circle projection methods to the
outer approximation algorithm, not only horizontal as in the thesis, but also
vertical and diagonal, which may show different characteristics.

Furthermore, extensions of the proposed algorithm with state estimation
is a research direction, in which limited observability of distribution systems
can be incorporated and studied.

Finally, a limitation of the proposed method is the fact that it ignores
meshed aspects of networks, which requires consideration of phase angle
consistency-related constraints around orientation of each phase angle, which
are non-convex. Future works can extend the proposal by meshed networks.
Especially for transmission systems meshing is regarded as an important
element for future energy systems, as in the Netherlands, due to security
of supply, stability and integration of offshore wind [180]. Because of self-
healing technologies being explored for distribution systems, a meshed network
structure can be beneficial for, e.g., remote switching and reconfiguration. As
such, a meshed structure can also be relevant particularly for future MV
distribution grids. Three-phase models for distribution systems is another
research direction. An N − 1 security analysis can also be included in future
works, and scalability of the model considering this can be analysed.

6.1.2
Conclusions, limitations and future perspectives for computational tech-
niques and modelling accuracy for multi-agent DSO-TSO coordination for
congestion and voltage management

Conclusions
This contribution, linked to [Paper B], investigated the computational, power
flow accuracy and network-information exchange benefits of employing a two-
level ADMM into which a linearisation-based circle approximation to AC OPF
for distribution networks embedded as a nested structure to solve a multi-agent
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DSO-TSO coordination problem. Furthermore, a decentralised communication
structure is proposed reducing the network information exchange with some
computational and other potential benefits, such as less data storage needs and
cybersecurity. Multi-agent DSO-TSO coordination can be, e.g., through active
distribution networks proving flexibility towards a TSO to optimise scheduling
by considering the power flows at the interface. The problem is studied
as a multi-period time-coupled coordination problem - given the presence
of energy storage systems and demand response - in day-ahead operational
planning for the procurement of ancillary services has the objective to handle
operational issues regarding congestion and voltage problems jointly. The
modelling approach is a general framework consisting potentially of multiple
DSOs and TSOs in which the networks can be further decomposed in terms
of subsystems or devises. Such a problem constitutes a multi-block problem
without any warranty of convergence under a standard ADMM. Note that this
time-coupling and AC power flow modelling increases the computational load
of the model considerably.

Numerical experiments comparing the computational performance of
the proposed procedure with a standard ADMM along with a SOCP-
approximation to AC power flow as benchmarks revealed some benefits of
the proposal. The results demonstrated that in terms of number of iterations
and computational time, two-level ADMM outperforms standard ADMM. It is
observed that penalty parameter-tuning is an issue in both standard ADMM
and two-level ADMM and results vary depending on their choice. Two-level
ADMM is shown to provide convergence or a tighter optimality gap which can
be acceptable from an engineering point of view, depending on the application,
for a computationally demanding case with time-coupling and AC power flow.
For the same case, standard ADMM gives a divergent result for a given num-
ber of iterations, and does not seem to converge. In addition, incorporation
of the linearisation and decomposition procedure for AC power flow for dis-
tribution networks results in computational savings. In terms of network data
transfer, interchange of solely active and reactive power flows (or equivalently,
parameters related to sinus and cosine functions of nodal voltage) and their
dual values with the adjacent operator are needed. Accordingly a need for a
central controller is limited.

The value of DSO-TSO coordination is calculated under presented as-
sumptions. Accordingly, when with coordination and without coordination
cases compared, it is observed that the renewable generation curtailment
decreases by 23.63% and total system costs by 28.79%.
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Limitations and future perspectives
One limitation of this work is the fact that it ignores the broader perspectives
for the implementation of DSO-TSO coordination, where sociological, technical
and economic challenges need to be addressed.

Despite demonstrated advantages of a two-level ADMM in this work
in terms of parameter control and convergence, necessity to trial-and-error
parameter choice may not be entirely eliminated. In practice, one can use
experiences from previously run cases. For representative days, with regard
to demand and supply conditions for instance, the gained experience on the
parameters can be applied to similar days. This procedure can be done on
a regular basis, and a database for parameters can be created, and these
can be applied as a warm-start of the algorithm, by using techniques such
as machine learning and other data-driven methods, which can be a future
research direction.

Future works can relax the assumption that agents provide the computed
values honestly for exchange variables, include reputation of agents in the
modelling, and what can be learned from past data. Machine learning or
data-driven methods, such as reinforcement learning, can be considered to
be applied, e.g., in order to penalise agents when not acting honestly.

Other than that, auction theoretical aspects can be added into the
modelling, with frameworks incentivising truthful bidding of agents.

In addition, though system operators are assumed not to have any
hierarchy amongst each other, the implications of a potential hierarchy can
be analysed and discussed. Albeit this assumption, the fairness aspects for all
agents with further elements, such as fairness of curtailment for consumers,
are not taken into account, and left as future work.

Future works can focus on computational benefits of the proposed ap-
proach on coordination problems with stochasticity of e.g., generation or load,
and mixed-integer variables representing unit commitment. Moreover, despite
the fact that two-level ADMM can be a promising approach to handle the
multi-agent DSO-TSO coordination problem, some additional implementations
can be explored, such as within the context of microgrids. The scalability of
the approach in case of a larger number of agents can be investigated. For real
systems, further implementation capability might be needed - such as, parallel
computing in a cloud service, efficient parallelisation, and data structure, as
well as hot start or heuristic strategies. Other decentralised or distributed com-
putational techniques can also be explored for solving DSO-TSO coordination.

Furthermore, general state-of-the art limitation of ADMM models is the
necessity of significant penalty parameter-tuning. Two-level ADMM poten-
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tially provides more control over the parameter updates, though its trial-and-
error based tuning may not be eliminated as also observed in [149, 150]. As a
potential future research, one can analyse in more detail relationship between
the choice of penalty parameters, and the system characteristics, such as line
impedances and loading conditions.

Moreover, iterations of sub-problems in any ADMM model may have
diverging computational times amongst each other, leading to waiting by
faster sub-problems for the slower ones until a solution is found. Asynchronous
versions of two-level ADMM can be explored for computational savings.

Another point is in terms of some jumps in the results per iteration
observed within a two-level ADMM modelling, most likely because of the
existence of an outer loop providing control and feedback towards the inner
loop, which is lacking in a standard ADMM. Implementations along with a
’best upper bound’ or similar research directions can be thought of, or blended
with a two-level ADMM to achieve a monotonically decreasing optimality gap.

Furthermore, in terms of a managerial consideration, the day-ahead
planning problem presented ignores N − 1 security for the transmission
system so that it procures sufficient flexibility to re-dispatch in case of a
failure of a component. This security constraint is typically included in real
system operations [65]. Although this work focuses principally on the network
information exchange and coordination for mitigating congestion and voltage
problems, it is anticipated that inclusion of N − 1 security would not change
the principal conclusions of this work. Nevertheless, this is left as a future
work.

Future works can relax assumptions on energy storage systems, such as
being ideal, implement granular time scales, varying charging or discharging
efficiencies, degradation aspects, etc. Another extension can be by consider-
ing storage systems operated by third parties and having own objectives. This
latter would require consideration of equilibrium amongst not only system
operators but also storage operators. Another observation is that tight formu-
lations in the state-of-the art literature [139] to avoid binaries for capturing
not simultaneous charging and discharging, could not entirely prevent this to
occur. Since ADMM variants tend not to perform well for mixed-integer OPF
problems, such a convex formulation as in [139] is adapted in this work. Fu-
ture works can consider devising alternative formulations for capturing these
mutually exclusive states.

Moreover, demand response modelling can be extended further. For
instance, efficiency loss in demand shift due to weather and temperature can
be included.
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Finally, as in the previous contribution, the proposed power flow com-
putation method tends to be towards exact for radial, single-phase equivalent
distribution networks. Especially since transmission systems are commonly in
a meshed structure, future works can incorporate (non-convex) constraints re-
lated to meshed networks, and study three-phase distribution networks.

6.1.3
Conclusions, limitations and future perspectives for computational tech-
niques and modelling accuracy for pricing of non-convex scheduling

Conclusions
In this contribution, related to [Paper C]-[Paper D], a market-clearing
procedure is proposed that efficiently balances a reasonable-costly scheduling
for the next day’s operation with an endogenous cost-recovery guarantee.
Structurally, the rationale is to co-optimise energy and reserves in a stochastic
risk-averse framework while endogenously ensuring cost recovery for generation
companies. To this end, different cost recovery schemes are considered. These
schemes are compared against the existing uplift payments – based on out-
of-market compensation schemes, for the DA-stage. A revenue cap, limiting
windfall profits for low-cost generators and reallocating them to consumers, is
also designed and discussed. Such a revenue cap is inspired from the European
Union discussions revolved around increasing costs for consumers due to a
surge in fuel prices.

The resulting stochastic market-clearing procedure formulation is within
the class of Mixed-Integer Bi-Linear Programming (MIBLP) models, thus
challenging to be solved using off-the-shelf solvers or standard optimisation
algorithms. Therefore, a hybridisation of McCormick envelopes and binary
expansion is proposed to enhance the computational capability to solve the
clearing problem. Numerical experiments indicate that the computing time
under this solution approach decreases by approximately 70% compared to
the standard binary expansion when applied to an instance of the IEEE-118
test system.

Under case studies presented, it is shown that price computation schemes
presented lead to some differences in scheduling and price outcomes. Consider-
ation of a risk aversion by the system operator gives rise to a synchronization
of system costs amongst the schemes. Revenue cap indicates in almost all
cases the lowest consumer payments, which competes mostly with the scheme
’Cost Recovery in Expectation’. Under high uncertainty, mechanisms other
than ’Cost Recovery per Scenario’ may not always warrant covering the costs
of the generation companies. Nevertheless, such a mechanism may also cause
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shifts of revenues from the least marginal cost generators toward higher-cost
ones. Furthermore, co-optimising energy and reserves clearing, the costs for
safeguarding the power system are more transparently allocated and calcu-
lated. An energy-only market would otherwise require out-of-market mecha-
nisms to settle any real-time deviations. It is also shown that transmission
congestion can lead to high market-clearing prices.

It is also demonstrated that a risk-averse energy and reserve scheduling
can reduce load-shedding significantly, in the illustrated case by 77.3%, in case
an unobserved extremely low wind generation scenario occurs.

Limitations and future perspectives
Not consideration of fairness and market power are amongst the limitations
of the thesis, and left as a future work. In particular, future research can
look into fairness aspects of uplift or other out-of-market mechanisms, and
how to reimburse affected consumers. Revenue adequacy of system operators,
and the effect of congestion and contingency can be other research directions.
Furthermore, other techniques (e.g., machine learning or data-driven methods
for warm-start procedures, decompositions techniques such as ADMM-variants
- those which can potentially be applicable for mixed-integer problems) to
improve tractability can be studied. In general, the proposed model, because
of the computational time required to solve day-ahead market, is not directly
practicable in the current market context. The time aspect would be aggravated
also considering the fact that modern markets require complex orders as well
as increased time granularity of some markets (15-minutes or less). Solution
times can also be compared against other methods as future work, such as
convex hull techniques, which is considered to be a computationally expensive
method.

Another future direction is to analyse a Pareto curve in order for the
operators to be able to choose the best risk-weight parameters. Other risk-
control techniques, such as robust optimisation can also be studied as described
in [181, 182], instead of a CVaR risk-measure.

Finally, future works can study different approaches to reserve pricing,
such as in the references [183, 33].
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